Differential responses of anthers of stress tolerant and sensitive wheat cultivars to high temperature stress

Planta ◽  
2021 ◽  
Vol 254 (1) ◽  
Author(s):  
Richard G. Browne ◽  
Song F. Li ◽  
Sylvana Iacuone ◽  
Rudy Dolferus ◽  
Roger W. Parish
2006 ◽  
Vol 192 (2) ◽  
pp. 111-120 ◽  
Author(s):  
H. Tewolde ◽  
C. J. Fernandez ◽  
C. A. Erickson

ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ghazi N. Al-Karaki

A field study was carried out under rainfed conditions during the growing season 2008/2009 in Maru (Northern Jordan) to evaluate the phenological variation using heat-accumulated system and its relation with yield in sixteen durum wheat genotypes. Grain yield was negatively correlated with growing degree days (GDDs) to maturity, while positively correlated with GDD to heading. Increasing GDD to heading resulted in higher grain yield, while increasing grain fill duration had little effect. Rapid grain fill rate was positively correlated with grain weight and negatively correlated with grain fill duration. Waha-1, Omrabi-5, and Massara-1 genotypes had the highest grain yields among genotypes studied. These three genotypes tended to have relatively longer preheading periods with early maturity. The results of this study indicate that Mediterranean-adapted cultivars would have long preheading periods, followed by short periods and high rates of grain fill and mature early to avoid late-season drought and high-temperature stress and to attain high yields. Therefore, it is recommended for the development of high yielding wheat cultivars adapted to semiarid environments to select the genotypes with early maturity and a relatively long time to heading.


2020 ◽  
Vol 53 (2) ◽  
Author(s):  
Khalil Ahmed Laghari ◽  
Abdul Jabbar Pirzada ◽  
Mahboob Ali Sial ◽  
Muhammad Athar Khan ◽  
Jamal Uddin Mangi

2020 ◽  
Vol 52 (5) ◽  
Author(s):  
De-Gong Wu ◽  
Qiu-Wen Zhan ◽  
Hai-Bing Yu ◽  
Bao-Hong Huang ◽  
Xin-Xin Cheng ◽  
...  

Author(s):  
D-J Kim ◽  
I-G Kim ◽  
J-Y Noh ◽  
H-J Lee ◽  
S-H Park ◽  
...  

Abstract As DRAM technology extends into 12-inch diameter wafer processing, plasma-induced wafer charging is a serious problem in DRAM volume manufacture. There are currently no comprehensive reports on the potential impact of plasma damage on high density DRAM reliability. In this paper, the possible effects of floating potential at the source/drain junction of cell transistor during high-field charge injection are reported, and regarded as high-priority issues to further understand charging damage during the metal pad etching. The degradation of block edge dynamic retention time during high temperature stress, not consistent with typical reliability degradation model, is analyzed. Additionally, in order to meet the satisfactory reliability level in volume manufacture of high density DRAM technology, the paper provides the guidelines with respect to plasma damage. Unlike conventional model as gate antenna effect, the cell junction damage by the exposure of dummy BL pad to plasma, was revealed as root cause.


Sign in / Sign up

Export Citation Format

Share Document