scholarly journals Characterization of orexin input to dopamine neurons of the ventral tegmental area projecting to the medial prefrontal cortex and shell of nucleus accumbens

Author(s):  
Imre Kalló ◽  
Azar Omrani ◽  
Frank J. Meye ◽  
Han de Jong ◽  
Zsolt Liposits ◽  
...  

AbstractOrexin neurons are involved in homeostatic regulatory processes, including arousal and feeding, and provide a major input from the hypothalamus to the ventral tegmental area (VTA) of the midbrain. VTA neurons are a central hub processing reward and motivation and target the medial prefrontal cortex (mPFC) and the shell part of nucleus accumbens (NAcs). We investigated whether subpopulations of dopamine (DA) neurons in the VTA projecting either to the mPFC or the medial division of shell part of nucleus accumbens (mNAcs) receive differential input from orexin neurons and whether orexin exerts differential electrophysiological effects upon these cells. VTA neurons projecting to the mPFC or the mNAcs were traced retrogradely by Cav2-Cre virus and identified by expression of yellow fluorescent protein (YFP). Immunocytochemical analysis showed that a higher proportion of all orexin-innervated DA neurons projected to the mNAcs (34.5%) than to the mPFC (5.2%). Of all sampled VTA neurons projecting either to the mPFC or mNAcs, the dopaminergic (68.3 vs. 79.6%) and orexin-innervated DA neurons (68.9 vs. 64.4%) represented the major phenotype. Whole-cell current clamp recordings were obtained from fluorescently labeled neurons in slices during baseline periods and bath application of orexin A. Orexin similarly increased the firing rate of VTA dopamine neurons projecting to mNAcs (1.99 ± 0.61 Hz to 2.53 ± 0.72 Hz) and mPFC (0.40 ± 0.22 Hz to 1.45 ± 0.56 Hz). Thus, the hypothalamic orexin system targets mNAcs and to a lesser extent mPFC-projecting dopaminergic neurons of the VTA and exerts facilitatory effects on both clusters of dopamine neurons.

2020 ◽  
Vol 133 (2) ◽  
pp. 377-392
Author(s):  
Gaolin Qiu ◽  
Ying Wu ◽  
Zeyong Yang ◽  
Long Li ◽  
Xiaona Zhu ◽  
...  

Background Dexmedetomidine induces a sedative response that is associated with rapid arousal. To elucidate the underlying mechanisms, the authors hypothesized that dexmedetomidine increases the activity of dopaminergic neurons in the ventral tegmental area, and that this action contributes to the unique sedative properties of dexmedetomidine. Methods Only male mice were used. The activity of ventral tegmental area dopamine neurons was measured by a genetically encoded Ca2+ indicator and patch-clamp recording. Dopamine neurotransmitter dynamics in the medial prefrontal cortex and nucleus accumbens were measured by a genetically encoded dopamine sensor. Ventral tegmental area dopamine neurons were inhibited or activated by a chemogenetic approach, and the depth of sedation was estimated by electroencephalography. Results Ca2+ signals in dopamine neurons in the ventral tegmental area increased after intraperitoneal injection of dexmedetomidine (40 μg/kg; dexmedetomidine, 16.917 [14.882; 21.748], median [25%; 75%], vs. saline, –0.745 [–1.547; 0.359], normalized data, P = 0.001; n = 6 mice). Dopamine transmission increased in the medial prefrontal cortex after intraperitoneal injection of dexmedetomidine (40 μg/kg; dexmedetomidine, 10.812 [9.713; 15.104], median [25%; 75%], vs. saline, –0.498 [–0.664; –0.355], normalized data, P = 0.001; n = 6 mice) and in the nucleus accumbens (dexmedetomidine, 8.543 [7.135; 11.828], median [25%; 75%], vs. saline, –0.329 [–1.220; –0.047], normalized data, P = 0.001; n = 6 mice). Chemogenetic inhibition or activation of ventral tegmental area dopamine neurons increased or decreased slow waves, respectively, after intraperitoneal injection of dexmedetomidine (40 μg/kg; delta wave: two-way repeated measures ANOVA, F[2, 33] = 8.016, P = 0.002; n = 12 mice; theta wave: two-way repeated measures ANOVA, F[2, 33] = 22.800, P < 0.0001; n = 12 mice). Conclusions Dexmedetomidine activates dopamine neurons in the ventral tegmental area and increases dopamine concentrations in the related forebrain projection areas. This mechanism may explain rapid arousability upon dexmedetomidine sedation. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


2017 ◽  
Author(s):  
Li Yang ◽  
Ming Chen ◽  
Ping Zheng

AbstractRecently, we found that morphine promoted presynaptic glutamate release of dopamine (DA) neurons in the ventral tegmental area (VTA), which constituted the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors (Chen et al., 2015). However, what source of presynaptic glutamate release of DA neurons in the VTA is promoted by morphine remains unknown. To address this question, we used optogenetic strategy to selectively activate glutamatergic inputs from different projection neurons and then observed the effect of morphine on them. The result shows that morphine promotes glutamate release from glutamatergic terminals of projection neurons from the medial prefrontal cortex (mPFC) to VTA DA neurons, but has no effect on that from the basolateral amygdala (BLA) or the lateral hypothalamus (LH) to VTA DA neurons, and the inhibition of glutamatergic projection neurons from the mPFC to the VTA significantly reduces morphine-induced increase in locomotor activity of mice.


Sign in / Sign up

Export Citation Format

Share Document