scholarly journals Phosphorylation of CAP1 regulates lung cancer proliferation, migration, and invasion

Author(s):  
Jie Zeng ◽  
Xuan Li ◽  
Long Liang ◽  
Hongxia Duan ◽  
Shuanshuan Xie ◽  
...  

Abstract Purpose Cyclase-associated protein 1 (CAP1) is a ubiquitous protein which regulates actin dynamics. Previous studies have shown that S308 and S310 are the two major phosphorylated sites in human CAP1. In the present study, we aimed to investigate the role of CAP1 phosphorylation in lung cancer. Methods Massive bioinformatics analysis was applied to determine CAP1’s role in different cancers and especially in lung cancer. Lung cancer patients’ serum and tissue were collected and analyzed in consideration of clinical background. CAP1 shRNA-lentivirus and siRNA were applied to CAP1 gene knockdown, and plasmids were constructed for CAP1 phosphorylation and de-phosphorylation. Microarray analysis was used for CAP1-associated difference analysis. Both in vitro and in vivo experiments were performed to investigate the roles of CAP1 phosphorylation and de-phosphorylation in lung cancer A549 cells. Results CAP1 is a kind of cancer-related protein. Its mRNA was overexpressed in most types of cancer tissues when compared with normal tissues. CAP1 high expression correlated with poor prognosis. Our results showed that serum CAP1 protein concentrations were significantly upregulated in non-small cell lung cancer (NSCLC) patients when compared with the healthy control group, higher serum CAP1 protein concentration correlated with shorter overall survival (OS) in NSCLC patients, and higher pCAP1 and CAP1 protein level were observed in lung cancer patients’ tumor tissue compared with adjacent normal tissue. Knockdown CAP1 in A549 cells can inhibit proliferation and migration, and the effect is validated in H1975 cells. It can also lead to an increase ratio of F-actin/G-actin. In addition, phosphorylated S308 and S310 in CAP1 promoted lung cancer cell proliferation, migration, and metastasis both in vitro and in vivo. When de-phosphorylated, these two sites in CAP1 showed the opposite effect. Phosphorylation of CAP1 can promote epithelial–mesenchymal transition (EMT). Conclusion These findings indicated that CAP1 phosphorylation can promote lung cancer proliferation, migration, and invasion. Phosphorylation sites of CAP1 might be a novel target for lung cancer treatment.

2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Fu-Gang Duan ◽  
Mei-Fang Wang ◽  
Ya-Bing Cao ◽  
Dan Li ◽  
Run-Ze Li ◽  
...  

Abstract MicroRNAs regulate post-transcriptional gene expression and play important roles in multiple cellular processes. In this study, we found that miR-421 suppresses kelch-like ECH-associated protein 1(KEAP1) expression by targeting its 3′-untranslated region (3′UTR). A Q-PCR assay demonstrated that miR-421 is overexpressed in non-small cell lung cancer (NSCLC), especially in A549 cells. Consistently, the level of miR-421 was higher in clinical blood samples from lung cancer patients than in those from normal healthy donors, suggesting that miR-421 is an important lung cancer biomarker. Interestingly, overexpression of miR-421 reduced the level of KEAP1 expression, which further promoted lung cancer cell migration and invasion, as well as inhibited cell apoptosis both in vivo and in vitro. Furthermore, knockdown of miR-421 expression with an antisense morpholino oligonucleotide (AMO) increased ROS levels and treatment sensitivity to paclitaxel in vitro and in vivo, indicating that high miR-421 expression may at least partly account for paclitaxel tolerance in lung cancer patients. To find the upstream regulator of miR-421, one of the candidates, β-catenin, was knocked out via the CRISPR/Cas9 method in A549 cells. Our data showed that inhibiting β-catenin reduced miR-421 levels in A549 cells. In addition, β-catenin upregulation enhanced miR-421 expression, indicating that β-catenin regulates the expression of miR-421 in lung cancer. Taken together, our findings reveal the critical role of miR-421 in paclitaxel drug resistance and its upstream and downstream regulatory mechanisms. Therefore, miR-421 may serve as a potential molecular therapeutic target in lung cancer, and AMOs may be a potential treatment strategy.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Lei Han ◽  
Zeyong Huang ◽  
Yan Liu ◽  
Lijuan Ye ◽  
Dongqi Li ◽  
...  

AbstractBone metastasis is one of the most serious complications in lung cancer patients. MicroRNAs (miRNAs) play important roles in tumour development, progression and metastasis. A previous study showed that miR-106a is highly expressed in the tissues of lung adenocarcinoma with bone metastasis, but its mechanism remains unclear. In this study, we showed that miR-106a expression is dramatically increased in lung cancer patients with bone metastasis (BM) by immunohistochemical analysis. MiR-106a promoted A549 and SPC-A1 cell proliferation, migration and invasion in vitro. The results of bioluminescence imaging (BLI), micro-CT and X-ray demonstrated that miR-106a promoted bone metastasis of lung adenocarcinoma in vivo. Mechanistic investigations revealed that miR-106a upregulation promoted metastasis by targeting tumour protein 53-induced nuclear protein 1 (TP53INP1)-mediated metastatic progression, including cell migration, autophagy-dependent death and epithelial–mesenchymal transition (EMT). Notably, autophagy partially attenuated the effects of miR-106a on promoting bone metastasis in lung adenocarcinoma. These findings demonstrated that restoring the expression of TP53INP1 by silencing miR-106a may be a novel therapeutic strategy for bone metastatic in lung adenocarcinoma.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Jingtao Zhang ◽  
Zihao Xu ◽  
Boyao Yu ◽  
Jiatang Xu ◽  
Bentong Yu

Abstract The tripartite motif (TRIM) family is a family of proteins with highly conserved domains. Previous researches have suggested that the members of TRIM family proteins played a crucial role in cancer development and progression. Our study explored the relationship between TRIM35 and non-small cell lung cancer (NSCLC). The study showed that the expression of TRIM35 was increased in NSCLC samples, and patients with high expression of TRIM35 had a poor clinical prognosis. Overexpression of TRIM35 in NSCLC cell line H460 promoted cell proliferation, migration, and invasion, knockdown of TRIM35 produced an opposite result in A549 and H1299 cell lines. In vivo study further confirmed that overexpression of TRIM35 promoted tumor formation. The RNA-seq analysis suggested that TRIM35 might promote lung cancer proliferation, migration, and invasion by regulating cancer-associated functions and signaling pathways. Hence, we identified TRIM35 played a significant role in tumoral growth and was a potential diagnosis and prognosis target for lung cancer.


2021 ◽  
Vol 23 (1) ◽  
pp. 215
Author(s):  
Florence Bonnet-Magnaval ◽  
Leïla Halidou Diallo ◽  
Valérie Brunchault ◽  
Nathalie Laugero ◽  
Florent Morfoisse ◽  
...  

Stau1 is a pluripotent RNA-binding protein that is responsible for the post-transcriptional regulation of a multitude of transcripts. Here, we observed that lung cancer patients with a high Stau1 expression have a longer recurrence free survival. Strikingly, Stau1 did not impair cell proliferation in vitro, but rather cell migration and cell adhesion. In vivo, Stau1 depletion favored tumor progression and metastases development. In addition, Stau1 depletion strongly impaired vessel maturation. Among a panel of candidate genes, we specifically identified the mRNA encoding the cell adhesion molecule Thrombospondin 1 (THBS1) as a new target for Staufen-mediated mRNA decay. Altogether, our results suggest that regulation of THBS1 expression by Stau1 may be a key process involved in lung cancer progression.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 954
Author(s):  
Ye-Ram Kim ◽  
Ah-Reum Han ◽  
Jin-Baek Kim ◽  
Chan-Hun Jung

The use of ionizing radiation (IR) during radiotherapy can induce malignant effects, such as metastasis, which contribute to poor prognoses in lung cancer patients. Here, we explored the ability of dendrobine, a plant-derived alkaloid from Dendrobium nobile, to improve the efficacy of radiotherapy in non-small cell lung cancer (NSCLC). We employed Western blotting, quantitative real-time (qRT)-PCR, transwell migration assays, and wound-healing assays to determine the effects of dendrobine on the migration and invasion of A549 lung cancer cells in vitro. Dendrobine (5 mm) inhibited γ-irradiation-induced migration and invasion of A549 cells by suppressing sulfatase2 (SULF2) expression, thus inhibiting IR-induced signaling. To investigate the inhibitory effects of dendrobine in vivo, we established a mouse model of IR-induced metastasis by injecting BALB/c nude mice with γ-irradiated A549 cells via the tail vein. As expected, injection with γ-irradiated cells increased the number of pulmonary metastatic nodules in mice (0 Gy/DPBS, 9.8 ± 1.77; 2 Gy/DPBS, 20.87 ± 1.42), which was significantly reduced with dendrobine treatment (2 Gy/Dendrobine, 10.87 ± 0.71), by prevention of IR-induced signaling. Together, these findings demonstrate that dendrobine exerts inhibitory effects against γ-irradiation-induced invasion and metastasis in NSCLC cells in vitro and in vivo at non cytotoxic concentrations. Thus, dendrobine could serve as a therapeutic enhancer to overcome the malignant effects of radiation therapy in patients with NSCLC.


2021 ◽  
Author(s):  
Jianfeng Xian ◽  
Yuyuan Zeng ◽  
Shizhen Chen ◽  
Liming Lu ◽  
Li Liu ◽  
...  

Abstract A non-invasive method to distinguish potential lung cancer patients would improve lung cancer prevention. We employed the RNA-Seq analysis to profile serum exosomal long non-coding RNAs (lncRNAs) from non-small cell lung cancer (NSCLC) patients and pneumonia controls, and then determined the diagnostic and prognostic value of a promising lncRNA in four datasets. We identified 90 dysregulated lncRNAs for NSCLC and found the most significant lncRNA was a novel isoform of linc01125. Serum exosomal linc01125 could distinguish NSCLC cases from disease-free and tuberculosis controls, with the area under the curve (AUC) values as 0.662 (95% confidence interval [CI]= 0.614-0.711) and 0.624 (95%CI= 0.522–0.725), respectively. High expression of exosomal linc01125 was also correlated with an unfavorable overall survival of NSCLC (hazard ratio [HR] = 1.58, 95%CI = 1.01–2.49). Clinic treatment decreased serum exosomal linc01125 in NSCLC patients (P = 0.036). Linc01125 functions to inhibit cancer growth and metastasis via acting as a competing endogenous RNA to up-regulate TNFAIP3 expression by sponging miR-19b-3p. Notably, the oncogenic transformation of 16HBE leads to decreased linc01125 in cells but increased linc01125 in cell-derived exosomes. The expression of linc01125 in total exosomes was highly correlated with that in tumor-associated exosomes in serum. Moreover, lung cancer cells were capable of releasing linc01125 into exosomes in vitro and in vivo. Our analyses suggest serum exosomal linc01125 as a promising biomarker for non-invasively diagnosing NSCLC and predicting the prognosis of NSCLC.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yanyang Cao ◽  
Xuan Wang ◽  
Yunsheng Li ◽  
Maria Evers ◽  
Haiyun Zhang ◽  
...  

Abstract Background Extracellular ATP (eATP) was shown to induce epithelial–mesenchymal transition (EMT), a very important early process in metastasis, in cancer cells via purinergic receptor signaling. However, the exact induction mechanisms are far from fully known. We previously described that eATP is internalized by cancer cells in vitro and in vivo by macropinocytosis in human non-small cell lung cancer A549 and other cancer cells, drastically elevates intracellular ATP levels, enhances cell proliferation and resistance to anticancer drugs. In this study, we tested the hypothesis that eATP and macropinocytosis-internalized eATP also induces EMT and other early steps of metastasis. Methods Floating cells, fencing, and transwell assays were used to show that ATP induces cell detachment, new colony formation, migration and invasion in human A549 and other lung cancer cells. Western blots were used to detect ATP-induced changes in EMT-related proteins; Confocal microscopy was used to demonstrate ATP-induced metastasis-related cell morphological changes. Inhibitors and siRNA knockdowns were used to determine P2X7’s involvement in the ATP-induced EMT. CRISPR–Cas9 knockout of the SNX5 gene was used to identify macropinocytosis’ roles in EMT and cancer cell growth both in vitro and in vivo. Student t-test and one-way ANOVA were used to determine statistical significance, P < 0.05 was considered significant. Results eATP potently induces expression of matrix metallopeptidases (MMPs), and detachment, EMT, migration, and invasion of lung cancer cells. The induction was independent of TGF-β and semi-independent of P2X7 activation. eATP performs these functions not only extracellularly, but also intracellularly after being macropinocytically internalized to further enhance P2X7-mediated EMT, filopodia formation and other early steps of metastasis. The knockout of macropinocytosis-associated SNX5 gene significantly reduces macropinocytosis, slows down tumor growth, and changes tumor morphology in nude mice. Conclusions Collectively, these results show that eATP's functions in these processes not only from outside of cancer cells but also inside after being macropinocytotically internalized. These findings shed light on eATP’s initiator and effector roles in almost every step in early metastasis, which calls for rethinking and rebalancing energy equations of intracellular biochemical reactions and the Warburg effect, and identifies eATP and macropinocytosis as novel targets for potentially slowing down EMT and preventing metastasis.


2018 ◽  
Vol 243 (9) ◽  
pp. 739-748 ◽  
Author(s):  
Sei Won Kim ◽  
In Kyoung Kim ◽  
Jick Hwan Ha ◽  
Chang Dong Yeo ◽  
Hyeon Hui Kang ◽  
...  

Hypoxia is a critical characteristic of solid tumors with respect to cancer cell survival, angiogenesis, and metastasis. Hyperoxic treatment has been attempted to reverse hypoxia by enhancing the amount of dissolved oxygen in the plasma. In this study, we evaluated the effects of normobaric hyperoxia on the progression of lung cancer to determine whether oxygen toxicity can be used in cancer therapy. Following a tail vein injection of the Lewis lung carcinoma cells, C57BL/6J mice were exposed to a 24-h normobaric hyperoxia/normoxia cycle for two weeks. In addition, A549 lung cancer cells were incubated in a normobaric hyperoxia chamber for a 24-h period. As a result, the size and number of tumors in the lung decreased significantly with exposure to normobaric hyperoxia in the mouse model. Cell viability, colony-forming ability, migration, and invasion all decreased significantly in A549 cells exposed to normobaric hyperoxia and the normal control group exposed to normobaric hyperoxia showed no significant damage. Oxidative stress was more prominent with exposure to normobaric hyperoxia in cancer cells. A549 cells exposed to normobaric hyperoxia showed a significantly higher cell apoptosis ratio compared with A549 cells without normobaric hyperoxia exposure and normal human lung cells (BEAS-2B cells). The Bax/Bcl-2 mRNA expression ratio also increased significantly. Changes in the key regulators of apoptosis were similar between in vivo and in vitro conditions. The p-ERK level decreased, while the p-JNK level increased, after normobaric hyperoxia exposure in A549 cells. This study demonstrated the role of normobaric hyperoxia in inhibiting lung cancer. Normal tissue and cells showed no significant hyperoxic damage in our experimental setting. The anti-tumor effect of normobaric hyperoxia may due to the increased reactive oxygen species activity and apoptosis, which is related to the mitogen-activated protein kinase pathway. Impact statement Normobaric hyperoxia (NBO) is a feasible therapy for cancer with a low complication rate. Although NBO may be beneficial in cancer treatment, very few studies have been conducted; thus, the evidence is thin. This is the first study to clearly demonstrate morphological changes in lung cancer with NBO exposure and to investigate the underlying mechanisms both in vivo and in vitro. This study will arouse interest in NBO treatment and promote further research.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hui Xu ◽  
Wenjing Zhou ◽  
Fan Zhang ◽  
Linhui Wu ◽  
Juan Li ◽  
...  

AbstractPDS5B (precocious dissociation of sisters 5B) plays a pivotal role in carcinogenesis and progression. However, the biological functions of PDS5B in lung cancer and its underlying mechanisms are not fully elucidated. In the present study, we used MTT assays, wound-healing assays, and transwell migration and invasion approach to examine the cell viability, migration, and invasion of non-small cell lung cancer (NSCLC) cells after PDS5B modulation. Moreover, we investigated the function of PDS5B overexpression in vivo. Furthermore, we detected the expression of PDS5B in tissue samples of lung cancer patients by immunohistochemical study. We found that upregulation of PDS5B repressed cell viability, migration, and invasion in NSCLC cells, whereas downregulation of PDS5B had the opposite effects. We also observed that PDS5B overexpression retarded tumor growth in nude mice. Notably, PDS5B positively regulated LATS1 expression in NSCLC cells. Strikingly, low expression of PDS5B was associated with lymph node metastasis in lung cancer patients. Our findings suggest that PDS5B might be a therapeutic target for lung cancer.


Author(s):  
Huaping Tang ◽  
Jianyou Chen ◽  
Xiaolei Han ◽  
Yan Feng ◽  
Fang Wang

The chemoresistance of lung cancer is a significant contributor to its high mortality and morbidity rate. There is an urgent need to identify differentially expressed genes in lung cancer patients with a poor prognosis to develop effective means to overcome drug resistance in subsequent treatment. In this study, we identified the secreted phosphoprotein 1 (SPP1) as a potential gene associated with a poor diagnosis of lung cancer patients using the Cancer Genome Atlas analysis, which suggested that the expression of SPP1 in tumor tissues was significantly higher than normal tissues. The high expression of SPP1 was also correlated with tumor grade and poor clinical prognosis. To understand the roles of SPP1 and the DNA methyltransferase 1 (DNMT1), which regulated SPP1 expression, in affecting cell viability, migration and invasion, SPP1 and DNMT1 were overexpressed in the human lung cancer A549 and NCI-446 cells, followed by analyzing cell viability, migration and invasion. We showed that SPP1 promoted the proliferation, migration and invasion of lung cancer cells, and increased the resistance of lung cancer to the chemotherapeutic drug cisplatin. Knocking down SPP1 in cells restored sensitivity to cisplatin. Further, A549 cells without SPP1 overexpression demonstrated lower tumor growth rate than SPP1 overexpression cells using the xenograft tumor mouse model. High expression of SPP1 in lung cancer tumor tissue was caused by the reduced methylation level of its promoter region mediated by DNMT1. Our data suggested that SPP1 can be used as a marker for highly malignant lung cancer and targeting SPP1 may be a potential lung cancer treatment strategy.


Sign in / Sign up

Export Citation Format

Share Document