scholarly journals Different scales of gene duplications occurring at different times have jointly shaped the NBS-LRR genes in Prunus species

Author(s):  
Yan Zhong ◽  
Zhao Chen ◽  
Zong-Ming Cheng

AbstractIn this study, genome-wide identification, phylogenetic relationships, duplication time and selective pressure of the NBS-LRR genes, an important group of plant disease-resistance genes (R genes), were performed to uncover their genetic evolutionary patterns in the six Prunus species. A total of 1946 NBS-LRR genes were identified; specifically, 589, 361, 284, 281, 318, and 113 were identified in Prunus yedoensis, P. domestica, P. avium, P. dulcis, P. persica and P. yedoensis var. nudiflora, respectively. Two NBS-LRR gene subclasses, TIR-NBS-LRR (TNL) and non-TIR-NBS-LRR (non-TNL), were also discovered. In total, 435 TNL and 1511 non-TNL genes were identified and could be classified into 30/55/75 and 103/158/191 multi-gene families, respectively, according to three different criteria. Higher Ks and Ka/Ks values were detected in TNL gene families than in non-TNL gene families. These results indicated that the TNL genes had more members involved in relatively ancient duplications and were affected by stronger selection pressure than the non-TNL genes. In general, the NBS-LRR genes were shaped by species-specific duplications, and lineage-specific duplications occurred at recent and relatively ancient periods among the six Prunus species. Therefore, different duplicated copies of NBS-LRRs can resist specific pathogens and will provide an R-gene library for resistance breeding in Prunus species.

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Xian-Gui Yi ◽  
Xia-Qing Yu ◽  
Jie Chen ◽  
Min Zhang ◽  
Shao-Wei Liu ◽  
...  

Abstract Cerasus serrulata is a flowering cherry germplasm resource for ornamental purposes. In this work, we present a de novo chromosome-scale genome assembly of C. serrulata by the use of Nanopore and Hi-C sequencing technologies. The assembled C. serrulata genome is 265.40 Mb across 304 contigs and 67 scaffolds, with a contig N50 of 1.56 Mb and a scaffold N50 of 31.12 Mb. It contains 29,094 coding genes, 27,611 (94.90%) of which are annotated in at least one functional database. Synteny analysis indicated that C. serrulata and C. avium have 333 syntenic blocks composed of 14,072 genes. Blocks on chromosome 01 of C. serrulata are distributed on all chromosomes of C. avium, implying that chromosome 01 is the most ancient or active of the chromosomes. The comparative genomic analysis confirmed that C. serrulata has 740 expanded gene families, 1031 contracted gene families, and 228 rapidly evolving gene families. By the use of 656 single-copy orthologs, a phylogenetic tree composed of 10 species was constructed. The present C. serrulata species diverged from Prunus yedoensis ~17.34 million years ago (Mya), while the divergence of C. serrulata and C. avium was estimated to have occurred ∼21.44 Mya. In addition, a total of 148 MADS-box family gene members were identified in C. serrulata, accompanying the loss of the AGL32 subfamily and the expansion of the SVP subfamily. The MYB and WRKY gene families comprising 372 and 66 genes could be divided into seven and eight subfamilies in C. serrulata, respectively, based on clustering analysis. Nine hundred forty-one plant disease-resistance genes (R-genes) were detected by searching C. serrulata within the PRGdb. This research provides high-quality genomic information about C. serrulata as well as insights into the evolutionary history of Cerasus species.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xuehua Wan ◽  
Jennifer A. Saito ◽  
Shaobin Hou ◽  
Scott M. Geib ◽  
Anton Yuryev ◽  
...  

AbstractSome organisms can withstand complete body water loss (losing up to 99% of body water) and stay in ametabolic state for decades until rehydration, which is known as anhydrobiosis. Few multicellular eukaryotes on their adult stage can withstand life without water. We still have an incomplete understanding of the mechanism for metazoan survival of anhydrobiosis. Here we report the 255-Mb genome of Aphelenchus avenae, which can endure relative zero humidity for years. Gene duplications arose genome-wide and contributed to the expansion and diversification of 763 kinases, which represents the second largest metazoan kinome to date. Transcriptome analyses of ametabolic state of A. avenae indicate the elevation of ATP level for global recycling of macromolecules and enhancement of autophagy in the early stage of anhydrobiosis. We catalogue 74 species-specific intrinsically disordered proteins, which may facilitate A. avenae to survive through desiccation stress. Our findings refine a molecular basis evolving for survival in extreme water loss and open the way for discovering new anti-desiccation strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lan-Hua Qian ◽  
Yue Wang ◽  
Min Chen ◽  
Jia Liu ◽  
Rui-Sen Lu ◽  
...  

Secale cereale is an important crop in the Triticeae tribe of the Poaceae family, and it has unique agronomic characteristics and genome properties. It possesses resistance to many diseases and serves as an important resource for the breeding of other Triticeae crops. We performed a genome-wide study on S. cereale to identify the largest group of plant disease resistance genes (R genes), the nucleotide-binding site-leucine-rich repeat receptor (NBS-LRR) genes. In its genome, 582 NBS-LRR genes were identified, including one from the RNL subclass and 581 from the CNL subclass. The NBS-LRR gene number in the S. cereale genome is greater than that in barley and the diploid wheat genomes. S. cereale chromosome 4 contains the largest number of NBS-LRR genes among the seven chromosomes, which is different from the pattern in barley and the genomes B and D of wheat but similar to that in the genome A of wheat. Further synteny analysis suggests that more NBS-LRR genes on chromosome 4 have been inherited from a common ancestor by S. cereale and the wheat genome A than the wheat genomes B and D. Phylogenetic analysis revealed that at least 740 NBS-LRR lineages are present in the common ancestor of S. cereale, Hordeum vulgare and Triticum urartu. However, most of them have only been inherited by one or two species, with only 65 of them preserved in all three species. The S. cereale genome inherited 382 of these ancestral NBS-LRR lineages, but 120 of them have been lost in both H. vulgare and T. urartu. This study provides the full NBS-LRR profile of the S. cereale genome, which is a resource for S. cereale breeding and indicates that S. cereale can be an important material for the molecular breeding of other Triticeae crops.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yan Zhong ◽  
Xiaohui Zhang ◽  
Qinglong Shi ◽  
Zong-Ming Cheng

Abstract Background In plant genomes, high proportions of duplicate copies reveals that gene duplications play an important role in the evolutionary processes of plant species. A series of gene families under positive selection after recent duplication events in plant genomes indicated the evolution of duplicates driven by adaptive evolution. However, the genome-wide evolutionary features of young duplicate genes among closely related species are rarely reported. Results In this study, we conducted a systematic survey of young duplicate genes at genome-wide levels among six Rosaceae species, whose whole-genome sequencing data were successively released in recent years. A total of 35,936 gene families were detected among the six species, in which 60.25% were generated by young duplications. The 21,650 young duplicate gene families could be divided into two expansion types based on their duplication patterns, species-specific and lineage-specific expansions. Our results showed the species-specific expansions advantaging over the lineage-specific expansions. In the two types of expansions, high-frequency duplicate domains exhibited functional preference in response to environmental stresses. Conclusions The functional preference of the young duplicate genes in both the expansion types showed that they were inclined to respond to abiotic or biotic stimuli. Moreover, young duplicate genes under positive selection in both species-specific and lineage-specific expansions suggested that they were generated to adapt to the environmental factors in Rosaceae species.


2018 ◽  
Vol 69 (1) ◽  
pp. 72 ◽  
Author(s):  
Salman Alamery ◽  
Soodeh Tirnaz ◽  
Philipp Bayer ◽  
Reece Tollenaere ◽  
Boulos Chaloub ◽  
...  

Plant disease-resistance genes play a critical role in providing resistance against pathogens. The largest family of resistance genes are the nucleotide-binding site (NBS) and leucine-rich repeat (LRR) genes. They are classified into two major subfamilies, toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) and coiled-coil (CC)-NBS-LRR (CNL) proteins. We have identified and characterised 641 NBS-LRR genes in Brassica napus, 249 in B. rapa and 443 in B. oleracea. A ratio of 1 : 2 of CNL : TNL genes was found in the three species. Domain structure analysis revealed that 57% of the NBS-LRR genes are typical resistance genes and contain all three domains (TIR/CC, NBS, LRR), whereas the remaining genes are partially deleted or truncated. Of the NBS-LRR genes, 59% were found to be physically clustered, and individual genes involved in clusters were more polymorphic than those not clustered. Of the NBS-LRR genes in B. napus, 50% were identified as duplicates, reflecting a high level of genomic duplication and rearrangement. Comparative analysis between B. napus and its progenitor species indicated that >60% of NBS-LRR genes are conserved in B. napus. This study provides a valuable resource for the identification and characterisation of candidate NBS-LRR genes.


2018 ◽  
Author(s):  
Huitong Zhou ◽  
Tina Visnovska ◽  
Hua Gong ◽  
Sebastian Schmeier ◽  
Jon Hickford ◽  
...  

AbstractDNA repeats are common elements in eukaryotic genomes, and their multi-copy nature provides the opportunity for genetic exchange. This exchange can produce altered evolutionary patterns, including concerted evolution where within genome repeat copies are more similar to each other than to orthologous repeats in related species. Here we investigated the genetic architecture of the keratin-associated protein (KAP) gene family, KRTAP1. This family encodes proteins that are important components of hair and wool in mammals, and the genes are present in tandem copies. Comparison of KRTAP1 gene repeats from species across the mammalian phylogeny shows strongly contrasting evolutionary patterns between the coding regions, which have a concerted evolution pattern, and the flanking regions, which have a normal, radiating pattern of evolution. This dichotomy in evolutionary pattern transitions abruptly at the start and stop codons, and we show it is not the result of purifying selection acting to maintain species-specific protein sequences, nor of codon adaptation or reverse transcription of KRTAP1-n mRNA. Instead, the results are consistent with short-tract gene conversion events coupled with selection for these events in the coding region driving the contrasting evolutionary patterns found in the KRTAP1 repeats. Our work shows the power that repeat recombination has to complement selection and finely tune the sequences of repetitive genes. Interplay between selection and recombination may be a more common mechanism than currently appreciated for achieving specific adaptive outcomes in the many eukaryotic multi-gene families, and our work argues for greater emphasis on exploring the sequence structures of these families.


Genetics ◽  
2020 ◽  
Vol 215 (4) ◽  
pp. 1153-1169 ◽  
Author(s):  
Riddhiman K. Garge ◽  
Jon M. Laurent ◽  
Aashiq H. Kachroo ◽  
Edward M. Marcotte

Many gene families have been expanded by gene duplications along the human lineage, relative to ancestral opisthokonts, but the extent to which the duplicated genes function similarly is understudied. Here, we focused on structural cytoskeletal genes involved in critical cellular processes, including chromosome segregation, macromolecular transport, and cell shape maintenance. To determine functional redundancy and divergence of duplicated human genes, we systematically humanized the yeast actin, myosin, tubulin, and septin genes, testing ∼81% of human cytoskeletal genes across seven gene families for their ability to complement a growth defect induced by inactivation or deletion of the corresponding yeast ortholog. In five of seven families—all but α-tubulin and light myosin, we found at least one human gene capable of complementing loss of the yeast gene. Despite rescuing growth defects, we observed differential abilities of human genes to rescue cell morphology, meiosis, and mating defects. By comparing phenotypes of humanized strains with deletion phenotypes of their interaction partners, we identify instances of human genes in the actin and septin families capable of carrying out essential functions, but failing to fully complement the cytoskeletal roles of their yeast orthologs, thus leading to abnormal cell morphologies. Overall, we show that duplicated human cytoskeletal genes appear to have diverged such that only a few human genes within each family are capable of replacing the essential roles of their yeast orthologs. The resulting yeast strains with humanized cytoskeletal components now provide surrogate platforms to characterize human genes in simplified eukaryotic contexts.


2021 ◽  
Vol 22 (8) ◽  
pp. 4266
Author(s):  
Yan Liu ◽  
Dalong Li ◽  
Na Yang ◽  
Xiaolong Zhu ◽  
Kexin Han ◽  
...  

The nucleotide-binding site–leucine-rich repeat (NBS–LRR) gene family is the largest group of plant disease resistance (R) genes widespread in response to viruses, bacteria, and fungi usually involved in effector triggered immunity (ETI). Forty members of the Chinese cabbage CC type NBS–LRR family were investigated in this study. Gene and protein characteristics, such as distributed locations on chromosomes and gene structures, were explored through comprehensive analysis. CC–NBS–LRR proteins were classified according to their conserved domains, and the phylogenetic relationships of CC–NBS–LRR proteins in Brassica rapa, Arabidopsis thaliana, and Oryza sativa were compared. Moreover, the roles of BrCC–NBS–LRR genes involved in pathogenesis-related defense were studied and analyzed. First, the expression profiles of BrCC–NBS–LRR genes were detected by inoculating with downy mildew and black rot pathogens. Second, sensitive and resistant Chinese cabbage inbred lines were screened by downy mildew and black rot. Finally, the differential expression levels of BrCC–NBS–LRR genes were monitored at 0, 1, 3, 6, 12 and 24 h for short and 0, 3, 5, 7, 10 and 14 days for long inoculation time. Our study provides information on BrCC–NBS–LRR genes for the investigation of the functions and mechanisms of CC-NBS-LRR genes in Chinese cabbage.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zihan Cheng ◽  
Xuemei Zhang ◽  
Wenjing Yao ◽  
Kai Zhao ◽  
Lin Liu ◽  
...  

Abstract Background The Late Embryogenesis-Abundant (LEA) gene families, which play significant roles in regulation of tolerance to abiotic stresses, widely exist in higher plants. Poplar is a tree species that has important ecological and economic values. But systematic studies on the gene family have not been reported yet in poplar. Results On the basis of genome-wide search, we identified 88 LEA genes from Populus trichocarpa and renamed them as PtrLEA. The PtrLEA genes have fewer introns, and their promoters contain more cis-regulatory elements related to abiotic stress tolerance. Our results from comparative genomics indicated that the PtrLEA genes are conserved and homologous to related genes in other species, such as Eucalyptus robusta, Solanum lycopersicum and Arabidopsis. Using RNA-Seq data collected from poplar under two conditions (with and without salt treatment), we detected 24, 22 and 19 differentially expressed genes (DEGs) in roots, stems and leaves, respectively. Then we performed spatiotemporal expression analysis of the four up-regulated DEGs shared by the tissues, constructed gene co-expression-based networks, and investigated gene function annotations. Conclusion Lines of evidence indicated that the PtrLEA genes play significant roles in poplar growth and development, as well as in responses to salt stress.


Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 149
Author(s):  
Chao Gong ◽  
Qiangqiang Pang ◽  
Zhiliang Li ◽  
Zhenxing Li ◽  
Riyuan Chen ◽  
...  

Under high temperature stress, a large number of proteins in plant cells will be denatured and inactivated. Meanwhile Hsfs and Hsps will be quickly induced to remove denatured proteins, so as to avoid programmed cell death, thus enhancing the thermotolerance of plants. Here, a comprehensive identification and analysis of the Hsf and Hsp gene families in eggplant under heat stress was performed. A total of 24 Hsf-like genes and 117 Hsp-like genes were identified from the eggplant genome using the interolog from Arabidopsis. The gene structure and motif composition of Hsf and Hsp genes were relatively conserved in each subfamily in eggplant. RNA-seq data and qRT-PCR analysis showed that the expressions of most eggplant Hsf and Hsp genes were increased upon exposure to heat stress, especially in thermotolerant line. The comprehensive analysis indicated that different sets of SmHsps genes were involved downstream of particular SmHsfs genes. These results provided a basis for revealing the roles of SmHsps and SmHsp for thermotolerance in eggplant, which may potentially be useful for understanding the thermotolerance mechanism involving SmHsps and SmHsp in eggplant.


Sign in / Sign up

Export Citation Format

Share Document