scholarly journals BDNF signaling during the lifetime of dendritic spines

2020 ◽  
Vol 382 (1) ◽  
pp. 185-199 ◽  
Author(s):  
Marta Zagrebelsky ◽  
Charlotte Tacke ◽  
Martin Korte

Abstract Dendritic spines are tiny membrane specialization forming the postsynaptic part of most excitatory synapses. They have been suggested to play a crucial role in regulating synaptic transmission during development and in adult learning processes. Changes in their number, size, and shape are correlated with processes of structural synaptic plasticity and learning and memory and also with neurodegenerative diseases, when spines are lost. Thus, their alterations can correlate with neuronal homeostasis, but also with dysfunction in several neurological disorders characterized by cognitive impairment. Therefore, it is important to understand how different stages in the life of a dendritic spine, including formation, maturation, and plasticity, are strictly regulated. In this context, brain-derived neurotrophic factor (BDNF), belonging to the NGF-neurotrophin family, is among the most intensively investigated molecule. This review would like to report the current knowledge regarding the role of BDNF in regulating dendritic spine number, structure, and plasticity concentrating especially on its signaling via its two often functionally antagonistic receptors, TrkB and p75NTR. In addition, we point out a series of open points in which, while the role of BDNF signaling is extremely likely conclusive, evidence is still missing.

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1678
Author(s):  
Liriopé Toupenet Marchesi ◽  
Marion Leblanc ◽  
Giovanni Stevanin

Hereditary spastic paraplegia (HSP) refers to a group of neurological disorders involving the degeneration of motor neurons. Due to their clinical and genetic heterogeneity, finding common effective therapeutics is difficult. Therefore, a better understanding of the common pathological mechanisms is necessary. The role of several HSP genes/proteins is linked to the endolysosomal and autophagic pathways, suggesting a functional convergence. Furthermore, impairment of these pathways is particularly interesting since it has been linked to other neurodegenerative diseases, which would suggest that the nervous system is particularly sensitive to the disruption of the endolysosomal and autophagic systems. In this review, we will summarize the involvement of HSP proteins in the endolysosomal and autophagic pathways in order to clarify their functioning and decipher some of the pathological mechanisms leading to HSP.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Victoria Hale ◽  
Maren Weischer ◽  
Jong Y. Park

Although the causes of prostate cancer are largely unknown, previous studies support the role of genetic factors in the development of prostate cancer.CHEK2plays a critical role in DNA replication by responding to double-stranded breaks. In this review, we provide an overview of the current knowledge of the role of a genetic variant, 1100delC, ofCHEK2on prostate cancer risk and discuss the implication for potential translation of this knowledge into clinical practice. Currently, twelve articles that discussedCHEK2∗1100delC and its association with prostate cancer were identified. Of the twelve prostate cancer studies, five studies had independent data to draw conclusive evidence from. The pooled results of OR and 95% CI were 1.98 (1.23–3.18) for unselected cases and 3.39 (1.78–6.47) for familial cases, indicating thatCHEK2∗1100delC mutation is associated with increased risk of prostate cancer. Screening for CHEK2∗1100delC should be considered in men with a familial history of prostate cancer.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Christopher A. Chapleau ◽  
Elena Maria Boggio ◽  
Gaston Calfa ◽  
Alan K. Percy ◽  
Maurizio Giustetto ◽  
...  

Alterations in dendritic spines have been documented in numerous neurodevelopmental disorders, including Rett Syndrome (RTT). RTT, an X chromosome-linked disorder associated with mutations inMECP2, is the leading cause of intellectual disabilities in women. Neurons inMecp2-deficient mice show lower dendritic spine density in several brain regions. To better understand the role of MeCP2 on excitatory spine synapses, we analyzed dendritic spines of CA1 pyramidal neurons in the hippocampus ofMecp2tm1.1Jaemale mutant mice by either confocal microscopy or electron microscopy (EM). At postnatal-day 7 (P7), well before the onset of RTT-like symptoms, CA1 pyramidal neurons from mutant mice showed lower dendritic spine density than those from wildtype littermates. On the other hand, at P15 or later showing characteristic RTT-like symptoms, dendritic spine density did not differ between mutant and wildtype neurons. Consistently, stereological analyses at the EM level revealed similar densities of asymmetric spine synapses in CA1stratum radiatumof symptomatic mutant and wildtype littermates. These results raise caution regarding the use of dendritic spine density in hippocampal neurons as a phenotypic endpoint for the evaluation of therapeutic interventions in symptomaticMecp2-deficient mice. However, they underscore the potential role of MeCP2 in the maintenance of excitatory spine synapses.


Physiology ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Barbara Calabrese ◽  
Margaret S. Wilson ◽  
Shelley Halpain

Dendritic spines are small protrusions from neuronal dendrites that form the postsynaptic component of most excitatory synapses in the brain. They play critical roles in synaptic transmission and plasticity. Recent advances in imaging and molecular technologies reveal that spines are complex, dynamic structures that contain a dense array of cytoskeletal, transmembrane, and scaffolding molecules. Several neurological and psychiatric disorders exhibit dendritic spine abnormalities.


2015 ◽  
Vol 26 (6) ◽  
pp. 1141-1159 ◽  
Author(s):  
Gisela Garcia-Alvarez ◽  
Bo Lu ◽  
Kenrick An Fu Yap ◽  
Loo Chin Wong ◽  
Jervis Vermal Thevathasan ◽  
...  

STIMs (STIM1 and STIM2 in mammals) are transmembrane proteins that reside in the endoplasmic reticulum (ER) and regulate store-operated Ca2+ entry (SOCE). The function of STIMs in the brain is only beginning to be explored, and the relevance of SOCE in nerve cells is being debated. Here we identify STIM2 as a central organizer of excitatory synapses. STIM2, but not its paralogue STIM1, influences the formation of dendritic spines and shapes basal synaptic transmission in excitatory neurons. We further demonstrate that STIM2 is essential for cAMP/PKA-dependent phosphorylation of the AMPA receptor (AMPAR) subunit GluA1. cAMP triggers rapid migration of STIM2 to ER–plasma membrane (PM) contact sites, enhances recruitment of GluA1 to these ER-PM junctions, and promotes localization of STIM2 in dendritic spines. Both biochemical and imaging data suggest that STIM2 regulates GluA1 phosphorylation by coupling PKA to the AMPAR in a SOCE-independent manner. Consistent with a central role of STIM2 in regulating AMPAR phosphorylation, STIM2 promotes cAMP-dependent surface delivery of GluA1 through combined effects on exocytosis and endocytosis. Collectively our results point to a unique mechanism of synaptic plasticity driven by dynamic assembly of a STIM2 signaling complex at ER-PM contact sites.


2008 ◽  
Vol 180 (5) ◽  
pp. 1021-1035 ◽  
Author(s):  
Grzegorz M. Wilczynski ◽  
Filip A. Konopacki ◽  
Ewa Wilczek ◽  
Zofia Lasiecka ◽  
Adam Gorlewicz ◽  
...  

Temporal lobe epilepsy (TLE) is a devastating disease in which aberrant synaptic plasticity plays a major role. We identify matrix metalloproteinase (MMP) 9 as a novel synaptic enzyme and a key pathogenic factor in two animal models of TLE: kainate-evoked epilepsy and pentylenetetrazole (PTZ) kindling–induced epilepsy. Notably, we show that the sensitivity to PTZ epileptogenesis is decreased in MMP-9 knockout mice but is increased in a novel line of transgenic rats overexpressing MMP-9. Immunoelectron microscopy reveals that MMP-9 associates with hippocampal dendritic spines bearing asymmetrical (excitatory) synapses, where both the MMP-9 protein levels and enzymatic activity become strongly increased upon seizures. Further, we find that MMP-9 deficiency diminishes seizure-evoked pruning of dendritic spines and decreases aberrant synaptogenesis after mossy fiber sprouting. The latter observation provides a possible mechanistic basis for the effect of MMP-9 on epileptogenesis. Our work suggests that a synaptic pool of MMP-9 is critical for the sequence of events that underlie the development of seizures in animal models of TLE.


2015 ◽  
Vol 26 (22) ◽  
pp. 4171-4181 ◽  
Author(s):  
Samuel A. Ramirez ◽  
Sridhar Raghavachari ◽  
Daniel J. Lew

Dendritic spines are the postsynaptic terminals of most excitatory synapses in the mammalian brain. Learning and memory are associated with long-lasting structural remodeling of dendritic spines through an actin-mediated process regulated by the Rho-family GTPases RhoA, Rac, and Cdc42. These GTPases undergo sustained activation after synaptic stimulation, but whereas Rho activity can spread from the stimulated spine, Cdc42 activity remains localized to the stimulated spine. Because Cdc42 itself diffuses rapidly in and out of the spine, the basis for the retention of Cdc42 activity in the stimulated spine long after synaptic stimulation has ceased is unclear. Here we model the spread of Cdc42 activation at dendritic spines by means of reaction-diffusion equations solved on spine-like geometries. Excitable behavior arising from positive feedback in Cdc42 activation leads to spreading waves of Cdc42 activity. However, because of the very narrow neck of the dendritic spine, wave propagation is halted through a phenomenon we term geometrical wave-pinning. We show that this can account for the localization of Cdc42 activity in the stimulated spine, and, of interest, retention is enhanced by high diffusivity of Cdc42. Our findings are broadly applicable to other instances of signaling in extreme geometries, including filopodia and primary cilia.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Annapaola Angrisani ◽  
Annamaria Di Fiore ◽  
Enrico De Smaele ◽  
Marta Moretti

AbstractThe human family of Potassium (K+) Channel Tetramerization Domain (KCTD) proteins counts 25 members, and a significant number of them are still only partially characterized. While some of the KCTDs have been linked to neurological disorders or obesity, a growing tally of KCTDs are being associated with cancer hallmarks or involved in the modulation of specific oncogenic pathways. Indeed, the potential relevance of the variegate KCTD family in cancer warrants an updated picture of the current knowledge and highlights the need for further research on KCTD members as either putative therapeutic targets, or diagnostic/prognostic markers. Homology between family members, capability to participate in ubiquitination and degradation of different protein targets, ability to heterodimerize between members, role played in the main signalling pathways involved in development and cancer, are all factors that need to be considered in the search for new key players in tumorigenesis. In this review we summarize the recent published evidence on KCTD members’ involvement in cancer. Furthermore, by integrating this information with data extrapolated from public databases that suggest new potential associations with cancers, we hypothesize that the number of KCTD family members involved in tumorigenesis (either as positive or negative modulator) may be bigger than so far demonstrated.


2020 ◽  
Vol 27 (12) ◽  
pp. 3354-3373
Author(s):  
Fabio Bertan ◽  
Lena Wischhof ◽  
Liudmila Sosulina ◽  
Manuel Mittag ◽  
Dennis Dalügge ◽  
...  

AbstractDendritic spines are postsynaptic domains that shape structural and functional properties of neurons. Upon neuronal activity, Ca2+ transients trigger signaling cascades that determine the plastic remodeling of dendritic spines, which modulate learning and memory. Here, we study in mice the role of the intracellular Ca2+ channel Ryanodine Receptor 2 (RyR2) in synaptic plasticity and memory formation. We demonstrate that loss of RyR2 in pyramidal neurons of the hippocampus impairs maintenance and activity-evoked structural plasticity of dendritic spines during memory acquisition. Furthermore, post-developmental deletion of RyR2 causes loss of excitatory synapses, dendritic sparsification, overcompensatory excitability, network hyperactivity and disruption of spatially tuned place cells. Altogether, our data underpin RyR2 as a link between spine remodeling, circuitry dysfunction and memory acquisition, which closely resemble pathological mechanisms observed in neurodegenerative disorders.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Hsiao-Tang Hu ◽  
Pu-Yun Shih ◽  
Yu-Tzu Shih ◽  
Yi-Ping Hsueh

Dendritic spines are the location of excitatory synapses in the mammalian nervous system and are neuron-specific subcellular structures essential for neural circuitry and function. Dendritic spine morphology is determined by the F-actin cytoskeleton. F-actin remodeling must coordinate with different stages of dendritic spinogenesis, starting from dendritic filopodia formation to the filopodia-spines transition and dendritic spine maturation and maintenance. Hundreds of genes, including F-actin cytoskeleton regulators, membrane proteins, adaptor proteins, and signaling molecules, are known to be involved in regulating synapse formation. Many of these genes are not neuron-specific, but how they specifically control dendritic spine formation in neurons is an intriguing question. Here, we summarize how ubiquitously expressed genes, including syndecan-2, NF1 (encoding neurofibromin protein), VCP, and CASK, and the neuron-specific gene CTTNBP2 coordinate with neurotransmission, transsynaptic signaling, and cytoskeleton rearrangement to control dendritic filopodia formation, filopodia-spines transition, and dendritic spine maturation and maintenance. The aforementioned genes have been associated with neurological disorders, such as autism spectrum disorders (ASDs), mental retardation, learning difficulty, and frontotemporal dementia. We also summarize the corresponding disorders in this report.


Sign in / Sign up

Export Citation Format

Share Document