Biodegradation of waste cooking oil and simultaneous production of rhamnolipid biosurfactant by Pseudomonas aeruginosa P7815 in batch and fed-batch bioreactor

Author(s):  
Swati Sharma ◽  
Rahul Verma ◽  
Sahil Dhull ◽  
Soumen K. Maiti ◽  
Lalit M. Pandey
2020 ◽  
Vol 16 (6) ◽  
pp. 928-933
Author(s):  
Jujjavarapu S. Eswari

Objective: Biosurfactants are the surface active agents which are used for the reduction of surface and interfacial tensions of liquids. Rhamnolipids are the surfactants produced by Pseudomonas aeruginosa. It requires minimum nutrition for its growth as it can also grow in distilled water. The rhamnolipids produced by Pseudomonas aeruginosa are extra-cellular glycolipids consisting of L-rhamnose and 3-hydroxyalkanoic acid. Methods: The fed-batch method for the rhamnolipid production is considered in this study to know the influence of the carbon, nitrogen, phosphorous substrates as growth-limiting nutrients. Pulse feeding is employed for limiting nutrient addition at particular time interval to obtain maximum rhamnolipid formation from Pseudomonas aeruginosa compared with the batch process. Results: Out of 3 fed batch strategies constant glucose fed batch strategy shows best and gave maximum rhamnolipid concentration of 0.134 g/l.


2017 ◽  
Vol 109 ◽  
pp. 93-100 ◽  
Author(s):  
Chaudhry Haider Ali ◽  
Abdul Sattar Qureshi ◽  
Serge Maurice Mbadinga ◽  
Jin-Feng Liu ◽  
Shi-Zhong Yang ◽  
...  

2019 ◽  
Vol 30 (4) ◽  
pp. 301-312 ◽  
Author(s):  
Swati Sharma ◽  
Poulami Datta ◽  
Birendra Kumar ◽  
Pankaj Tiwari ◽  
Lalit M. Pandey

2018 ◽  
Vol 40 (1) ◽  
pp. 33-40
Author(s):  
Nafian Awaludin ◽  
Cut Nanda Sari

The decrease in oil production is caused by the ageing of oil production wells. The enhanced oil recovery (EOR) technology is proven to increase oil reserves and production in mature oil fields. One EOR technology that has proven to be efficient in increasing oil production is microbial EOR by using biosurfactant. The most effective biosurfactant is rhamnolipid produced by Pseudomonas aeruginosa, the bacteria of which can lower the interfacial tension between the petroleum and water. In biosurfactants production thanks to these bacteria, the substrate as the source of carbon in the fermentation process is needed. The sources of carbon used in this study are glucose, glycerol, molasses, banana peels, and waste from Pseudomonas aeruginosa by using Busnell Hass medium as a liquid medium of bacterial growth. Biosurfactants production results are; 74mg/L from glucose; 63mg/L from banana peels; 66mg / L from glycerol; 85mg/L from waste cooking oil; and 64mg/L of molasses with the following decreasing surface tension: 33.55 mN/m from glucose; 32.51 mN/m from banana peels; 27.55 mN/m from glycerol; 22.46 mN/m from waste cooking oil; and 31.49 mN/m from molasses. In addition, the decrease of interface tension of glucose; banana peels; glycerol; waste cooking oil; and molasses are as follows : 15.2 mN/m; 13.78 mN/m; 8:15 mN/m; 0.14 mN/m; and 11.2 mN/m respectively.Menurunnya produksi minyak bumi disebabkan karena sumur produksi yang sudah tua. Teknologi enhanced oil recovery (EOR) terbukti mampu meningkatkan cadangan dan produksi lapangan minyak mature. Salah satu teknologi EOR yang dikenal efi sien dalam meningkatkan perolehan minyak adalah microbial enhanced oil recovery menggunakan biosurfaktan. Biosurfaktan yang paling efektif adalah rhamnolipid yang dihasilkan oleh bakteri Pseudomonas aeruginosa yang dapat menurunkan tegangan antarmuka antara minyak bumi dengan air. Dalam produksi biosurfaktan oleh bakteri ini, diperlukan substrat sebagai sumber karbon dalam proses fermentasi. Sumber karbon yang digunakan pada penelitian ini adalah glukosa, gliserol, molase, kulit pisang, dan minyak jelantah. Penelitian ini bertujuan untuk mengetahui sumber karbon yang paling optimum dalam menghasilkan biosurfaktan dari Pseudomonas aeruginosa dengan menggunakan busnell hass medium sebagai media cair pertumbuhan bakteri. Produksi biosurfaktan yang dihasilkan adalah 74mg/L dari glukosa; 63mg/L dari kulit pisang; 66mg/L dari gliserol; 85mg/L dari minyak jelantah; dan 64mg/L dari molase dengan penurunan tegangan permukaan berturutturut: 33,55 mN/m dari glukosa; 32,51 mN/m dari kulit pisang; 27,55 mN/m dari gliserol; 22,46 mN/m dari minyak jelantah; dan 31,49 mN/m serta memiliki penurunan tegangan antarmuka dari glukosa; kulit pisang; glisero; minyak jelantah; dan molase berturut-turut adalah 15,2 mN/m; 13,78 mN/m; 8,15 mN/m; 0,14 mN/m; dan 11,2 mN/m.


2015 ◽  
Vol 263 ◽  
pp. 479-487 ◽  
Author(s):  
Ganesh L. Maddikeri ◽  
Parag R. Gogate ◽  
Aniruddha B. Pandit

2020 ◽  
Author(s):  
Juan Shi ◽  
Yichao Chen ◽  
Xiaofeng Liu ◽  
Yi Ran ◽  
Dong Li

AbstractThis study isolated a novel halotolerant Pseudomonas aeruginosa M4, that was able to degrade oil and produce rhamnolipids. Various carbon sources, nitrogen sources, inoculum ratio, pH, and temperature were tested to optimize the oil degradation conditions. The highest oil degradation rate of 85.20 % and lipase activity of 23.86 U/mL were obtained under the optimal conditions (5% inoculum at 35 °C and pH 8). The components of degradation products at different times were analyzed to explore the mechanism of oil degradation by GC-MS. Short chain fatty acid of acetic and n-butyric acids were the primary degradation intermediates. P. aeruginosa M4 had good salt tolerance up to 70 g/L. The maximum rhamnolipid concentration of 1119.87 mg/L was produced when P. aeruginosa M4 used waste cooking oil as the sole carbon source. Rhamnose precursors were synthesized from glycerol, a hydrolysis product of waste cooking oil. R-3-hydroxyalkanoate precursors were synthesized de novo using acetyl-CoA produced from β-oxidation of fatty acids. The findings show that P. aeruginosa M4 is a valuable biosurfactant producer in the treatment of waste cooking oil.Key PointsP. aeruginosa isolation, oil degradation mechanism, rhamnolipid production from WCO


Sign in / Sign up

Export Citation Format

Share Document