EmoPercept: EEG-based emotion classification through perceiver

2022 ◽  
Author(s):  
Aadam ◽  
Abdallah Tubaishat ◽  
Feras Al-Obeidat ◽  
Zahid Halim ◽  
Muhammad Waqas ◽  
...  
2020 ◽  
Author(s):  
Aishwarya Gupta ◽  
Devashish Sharma ◽  
Shaurya Sharma ◽  
Anushree Agarwal

2021 ◽  
Author(s):  
Intissar Khalifa ◽  
Ridha Ejbali ◽  
Raimondo Schettini ◽  
Mourad Zaied

Abstract Affective computing is a key research topic in artificial intelligence which is applied to psychology and machines. It consists of the estimation and measurement of human emotions. A person’s body language is one of the most significant sources of information during job interview, and it reflects a deep psychological state that is often missing from other data sources. In our work, we combine two tasks of pose estimation and emotion classification for emotional body gesture recognition to propose a deep multi-stage architecture that is able to deal with both tasks. Our deep pose decoding method detects and tracks the candidate’s skeleton in a video using a combination of depthwise convolutional network and detection-based method for 2D pose reconstruction. Moreover, we propose a representation technique based on the superposition of skeletons to generate for each video sequence a single image synthesizing the different poses of the subject. We call this image: ‘history pose image’, and it is used as input to the convolutional neural network model based on the Visual Geometry Group architecture. We demonstrate the effectiveness of our method in comparison with other methods in the state of the art on the standard Common Object in Context keypoint dataset and Face and Body gesture video database.


2021 ◽  
pp. 1-12
Author(s):  
Mukul Kumar ◽  
Nipun Katyal ◽  
Nersisson Ruban ◽  
Elena Lyakso ◽  
A. Mary Mekala ◽  
...  

Over the years the need for differentiating various emotions from oral communication plays an important role in emotion based studies. There have been different algorithms to classify the kinds of emotion. Although there is no measure of fidelity of the emotion under consideration, which is primarily due to the reason that most of the readily available datasets that are annotated are produced by actors and not generated in real-world scenarios. Therefore, the predicted emotion lacks an important aspect called authenticity, which is whether an emotion is actual or stimulated. In this research work, we have developed a transfer learning and style transfer based hybrid convolutional neural network algorithm to classify the emotion as well as the fidelity of the emotion. The model is trained on features extracted from a dataset that contains stimulated as well as actual utterances. We have compared the developed algorithm with conventional machine learning and deep learning techniques by few metrics like accuracy, Precision, Recall and F1 score. The developed model performs much better than the conventional machine learning and deep learning models. The research aims to dive deeper into human emotion and make a model that understands it like humans do with precision, recall, F1 score values of 0.994, 0.996, 0.995 for speech authenticity and 0.992, 0.989, 0.99 for speech emotion classification respectively.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1792
Author(s):  
Juan Hagad ◽  
Tsukasa Kimura ◽  
Ken-ichi Fukui ◽  
Masayuki Numao

Two of the biggest challenges in building models for detecting emotions from electroencephalography (EEG) devices are the relatively small amount of labeled samples and the strong variability of signal feature distributions between different subjects. In this study, we propose a context-generalized model that tackles the data constraints and subject variability simultaneously using a deep neural network architecture optimized for normally distributed subject-independent feature embeddings. Variational autoencoders (VAEs) at the input level allow the lower feature layers of the model to be trained on both labeled and unlabeled samples, maximizing the use of the limited data resources. Meanwhile, variational regularization encourages the model to learn Gaussian-distributed feature embeddings, resulting in robustness to small dataset imbalances. Subject-adversarial regularization applied to the bi-lateral features further enforces subject-independence on the final feature embedding used for emotion classification. The results from subject-independent performance experiments on the SEED and DEAP EEG-emotion datasets show that our model generalizes better across subjects than other state-of-the-art feature embeddings when paired with deep learning classifiers. Furthermore, qualitative analysis of the embedding space reveals that our proposed subject-invariant bi-lateral variational domain adversarial neural network (BiVDANN) architecture may improve the subject-independent performance by discovering normally distributed features.


2019 ◽  
Vol 9 (11) ◽  
pp. 326 ◽  
Author(s):  
Hong Zeng ◽  
Zhenhua Wu ◽  
Jiaming Zhang ◽  
Chen Yang ◽  
Hua Zhang ◽  
...  

Deep learning (DL) methods have been used increasingly widely, such as in the fields of speech and image recognition. However, how to design an appropriate DL model to accurately and efficiently classify electroencephalogram (EEG) signals is still a challenge, mainly because EEG signals are characterized by significant differences between two different subjects or vary over time within a single subject, non-stability, strong randomness, low signal-to-noise ratio. SincNet is an efficient classifier for speaker recognition, but it has some drawbacks in dealing with EEG signals classification. In this paper, we improve and propose a SincNet-based classifier, SincNet-R, which consists of three convolutional layers, and three deep neural network (DNN) layers. We then make use of SincNet-R to test the classification accuracy and robustness by emotional EEG signals. The comparable results with original SincNet model and other traditional classifiers such as CNN, LSTM and SVM, show that our proposed SincNet-R model has higher classification accuracy and better algorithm robustness.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 13378-13389
Author(s):  
Muhammad Adeel Asghar ◽  
Muhammad Jamil Khan ◽  
Humayun Shahid ◽  
Mohammad Shorfuzzaman ◽  
Neal Naixue Xiong ◽  
...  

2021 ◽  
Vol 13 (6) ◽  
pp. 3497
Author(s):  
Hassan Adamu ◽  
Syaheerah Lebai Lutfi ◽  
Nurul Hashimah Ahamed Hassain Malim ◽  
Rohail Hassan ◽  
Assunta Di Vaio ◽  
...  

Sustainable development plays a vital role in information and communication technology. In times of pandemics such as COVID-19, vulnerable people need help to survive. This help includes the distribution of relief packages and materials by the government with the primary objective of lessening the economic and psychological effects on the citizens affected by disasters such as the COVID-19 pandemic. However, there has not been an efficient way to monitor public funds’ accountability and transparency, especially in developing countries such as Nigeria. The understanding of public emotions by the government on distributed palliatives is important as it would indicate the reach and impact of the distribution exercise. Although several studies on English emotion classification have been conducted, these studies are not portable to a wider inclusive Nigerian case. This is because Informal Nigerian English (Pidgin), which Nigerians widely speak, has quite a different vocabulary from Standard English, thus limiting the applicability of the emotion classification of Standard English machine learning models. An Informal Nigerian English (Pidgin English) emotions dataset is constructed, pre-processed, and annotated. The dataset is then used to classify five emotion classes (anger, sadness, joy, fear, and disgust) on the COVID-19 palliatives and relief aid distribution in Nigeria using standard machine learning (ML) algorithms. Six ML algorithms are used in this study, and a comparative analysis of their performance is conducted. The algorithms are Multinomial Naïve Bayes (MNB), Support Vector Machine (SVM), Random Forest (RF), Logistics Regression (LR), K-Nearest Neighbor (KNN), and Decision Tree (DT). The conducted experiments reveal that Support Vector Machine outperforms the remaining classifiers with the highest accuracy of 88%. The “disgust” emotion class surpassed other emotion classes, i.e., sadness, joy, fear, and anger, with the highest number of counts from the classification conducted on the constructed dataset. Additionally, the conducted correlation analysis shows a significant relationship between the emotion classes of “Joy” and “Fear”, which implies that the public is excited about the palliatives’ distribution but afraid of inequality and transparency in the distribution process due to reasons such as corruption. Conclusively, the results from this experiment clearly show that the public emotions on COVID-19 support and relief aid packages’ distribution in Nigeria were not satisfactory, considering that the negative emotions from the public outnumbered the public happiness.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5135
Author(s):  
Ngoc-Dau Mai ◽  
Boon-Giin Lee ◽  
Wan-Young Chung

In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications.


i-Perception ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 204166952110095
Author(s):  
Elmeri Syrjänen ◽  
Håkan Fischer ◽  
Marco Tullio Liuzza ◽  
Torun Lindholm ◽  
Jonas K. Olofsson

How do valenced odors affect the perception and evaluation of facial expressions? We reviewed 25 studies published from 1989 to 2020 on cross-modal behavioral effects of odors on the perception of faces. The results indicate that odors may influence facial evaluations and classifications in several ways. Faces are rated as more arousing during simultaneous odor exposure, and the rated valence of faces is affected in the direction of the odor valence. For facial classification tasks, in general, valenced odors, whether pleasant or unpleasant, decrease facial emotion classification speed. The evidence for valence congruency effects was inconsistent. Some studies found that exposure to a valenced odor facilitates the processing of a similarly valenced facial expression. The results for facial evaluation were mirrored in classical conditioning studies, as faces conditioned with valenced odors were rated in the direction of the odor valence. However, the evidence of odor effects was inconsistent when the task was to classify faces. Furthermore, using a z-curve analysis, we found clear evidence for publication bias. Our recommendations for future research include greater consideration of individual differences in sensation and cognition, individual differences (e.g., differences in odor sensitivity related to age, gender, or culture), establishing standardized experimental assessments and stimuli, larger study samples, and embracing open research practices.


Sign in / Sign up

Export Citation Format

Share Document