Global exponential stability of fuzzy BAM neural networks with distributed delays and time-varying delays in the leakage terms

2012 ◽  
Vol 23 (S1) ◽  
pp. 171-178 ◽  
Author(s):  
Lian Duan ◽  
Lihong Huang



2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Qianhong Zhang ◽  
Lihui Yang ◽  
Jingzhong Liu

Constructing a new Lyapunov functional and employing inequality technique, the existence, uniqueness, and global exponential stability of the periodic oscillatory solution are investigated for a class of fuzzy bidirectional associative memory (BAM) neural networks with distributed delays and diffusion. We obtained some sufficient conditions ensuring the existence, uniqueness, and global exponential stability of the periodic solution. The results remove the usual assumption that the activation functions are differentiable. An example is provided to show the effectiveness of our results.



Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaohui Xu ◽  
Jiye Zhang ◽  
Quan Xu ◽  
Zilong Chen ◽  
Weifan Zheng

This paper studies the global exponential stability for a class of impulsive disturbance complex-valued Cohen-Grossberg neural networks with both time-varying delays and continuously distributed delays. Firstly, the existence and uniqueness of the equilibrium point of the system are analyzed by using the corresponding property of M-matrix and the theorem of homeomorphism mapping. Secondly, the global exponential stability of the equilibrium point of the system is studied by applying the vector Lyapunov function method and the mathematical induction method. The established sufficient conditions show the effects of both delays and impulsive strength on the exponential convergence rate. The obtained results in this paper are with a lower level of conservatism in comparison with some existing ones. Finally, three numerical examples with simulation results are given to illustrate the correctness of the proposed results.



Sign in / Sign up

Export Citation Format

Share Document