scholarly journals Deep learning and Internet of Things for tourist attraction recommendations in smart cities

Author(s):  
Juan Carlos Cepeda-Pacheco ◽  
Mari Carmen Domingo

AbstractWe propose a tourist attraction IoT-enabled deep learning-based recommendation system to enhance tourist experience in a smart city. Travelers will enter details about their travels (traveling alone or with a companion, type of companion such as partner or family with kids, traveling for business or leisure, etc.) as well as user side information (age of the traveler/s, hobbies, etc.) into the smart city app/website. Our proposed deep learning-based recommendation system will process this personal set of input features to recommend the tourist activities/attractions that best fit his/her profile. Furthermore, when the tourists are in the smart city, content-based information (already visited attractions) and context-related information (location, weather, time of day, etc.) are obtained in real time using IoT devices; this information will allow our proposed deep learning-based tourist attraction recommendation system to suggest additional activities and/or attractions in real time. Our proposed multi-label deep learning classifier outperforms other models (decision tree, extra tree, k-nearest neighbor and random forest) and can successfully recommend tourist attractions for the first case [(a) searching for and planning activities before traveling] with the loss, accuracy, precision, recall and F1-score of 0.5%, 99.7%, 99.9%, 99.9% and 99.8%, respectively. It can also successfully recommend tourist attractions for the second case [(b) looking for activities within the smart city] with the loss, accuracy, precision, recall and F1-score of 3.7%, 99.5%, 99.8%, 99.7% and 99.8%, respectively.

Author(s):  
Delna T D ◽  
Dhanya P Pauly ◽  
Dona Johnson ◽  
Jesta Jose

In the current smart city background, people are facing a lot of accidents at the major traffic points of the business towns due to growing population and vehicles growth in smart and metropolitan cities.In this method we consider the auto taxies as well as the public transport. We know that due to the overload in the vehicles the accidents are increasing day by day so using this method the number of accidents be able to be avoided or reduced. This system is introducing the deep learning approach to find the overload in vehicles. We are considering the luggage that is taken along with the passenger and an average weight is given for the load. Then it is combined with the number of passenger and system will predict whether the vehicle is overload or not. Mainly because of using deep learning concepts we can increase the speed of the process and the efficiency. The system will analyse the number of passengers using real time videos using camera and system detect and compare with the overloading conditions to avoidaccidents.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammed Anouar Naoui ◽  
Brahim Lejdel ◽  
Mouloud Ayad ◽  
Abdelfattah Amamra ◽  
Okba kazar

PurposeThe purpose of this paper is to propose a distributed deep learning architecture for smart cities in big data systems.Design/methodology/approachWe have proposed an architectural multilayer to describe the distributed deep learning for smart cities in big data systems. The components of our system are Smart city layer, big data layer, and deep learning layer. The Smart city layer responsible for the question of Smart city components, its Internet of things, sensors and effectors, and its integration in the system, big data layer concerns data characteristics 10, and its distribution over the system. The deep learning layer is the model of our system. It is responsible for data analysis.FindingsWe apply our proposed architecture in a Smart environment and Smart energy. 10; In a Smart environment, we study the Toluene forecasting in Madrid Smart city. For Smart energy, we study wind energy foresting in Australia. Our proposed architecture can reduce the time of execution and improve the deep learning model, such as Long Term Short Memory10;.Research limitations/implicationsThis research needs the application of other deep learning models, such as convolution neuronal network and autoencoder.Practical implicationsFindings of the research will be helpful in Smart city architecture. It can provide a clear view into a Smart city, data storage, and data analysis. The 10; Toluene forecasting in a Smart environment can help the decision-maker to ensure environmental safety. The Smart energy of our proposed model can give a clear prediction of power generation.Originality/valueThe findings of this study are expected to contribute valuable information to decision-makers for a better understanding of the key to Smart city architecture. Its relation with data storage, processing, and data analysis.


Author(s):  
Suresh P. ◽  
Keerthika P. ◽  
Sathiyamoorthi V. ◽  
Logeswaran K. ◽  
Manjula Devi R. ◽  
...  

Cloud computing and big data analytics are the key parts of smart city development that can create reliable, secure, healthier, more informed communities while producing tremendous data to the public and private sectors. Since the various sectors of smart cities generate enormous amounts of streaming data from sensors and other devices, storing and analyzing this huge real-time data typically entail significant computing capacity. Most smart city solutions use a combination of core technologies such as computing, storage, databases, data warehouses, and advanced technologies such as analytics on big data, real-time streaming data, artificial intelligence, machine learning, and the internet of things (IoT). This chapter presents a theoretical and experimental perspective on the smart city services such as smart healthcare, water management, education, transportation and traffic management, and smart grid that are offered using big data management and cloud-based analytics services.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 170 ◽  
Author(s):  
Daniel G. Costa ◽  
Francisco Vasques ◽  
Paulo Portugal ◽  
Ana Aguiar

The development of efficient sensing technologies and the maturation of the Internet of Things (IoT) paradigm and related protocols have considerably fostered the expansion of sensor-based monitoring applications. A great number of those applications has been developed to monitor a set of information for better perception of the environment, with some of them being dedicated to identifying emergency situations. Current IoT-based emergency systems have limitations when considering the broader scope of smart cities, exploiting one or just a few monitoring variables or even allocating high computational burden to regular sensor nodes. In this context, we propose a distributed multi-tier emergency alerting system built around a number of sensor-based event detection units, providing real-time georeferenced information about the occurrence of critical events, while taking as input a configurable number of different scalar sensors and GPS data. The proposed system could then be used to detect and to deliver emergency alarms, which are computed based on the detected events, the previously known risk level of the affected areas and temporal information. Doing so, modularized and flexible perceptions of critical events are provided, according to the particularities of each considered smart city scenario. Besides implementing the proposed system in open-source electronic platforms, we also created a real-time visualization application to dynamically display emergency alarms on a map, demonstrating a feasible and useful application of the system as a supporting service. Therefore, this innovative approach and its corresponding physical implementation can bring valuable results for smart cities, potentially supporting the development of adaptive IoT-based emergency-aware applications.


2020 ◽  
Vol 1 (1) ◽  
pp. 7-13
Author(s):  
Bayu Prastyo ◽  
Faiz Syaikhoni Aziz ◽  
Wahyu Pribadi ◽  
A.N. Afandi

Internet use in Banyumas Regency is now increasingly diverse according to the demands of the needs. The development of communication technology raises various aspects that also develop. For example, the use of the internet for a traffic light control system so that it can be adjusted according to the settings and can be monitored in real time. In the development of communication technology, the term Internet of Things (IoT) emerged as the concept of extending the benefits of internet communication systems to give impulses to other systems. In other words, IoT is used as a communication for remote control and monitoring by utilizing an internet connection. The Internet of Things in the era is now being developed to create an intelligent system for the purposes of controlling various public needs until the concept of the smart city emerges. Basically, smart cities utilize internet connections for many purposes such as controlling CCTV, traffic lights, controlling arm robots in the industry and storing data in hospitals. If the system is carried out directly from the device to the central server, there will be a very long queue of data while the system created requires speed and accuracy of time so that a system is needed that allows sufficient data control and processing to be carried out on network edge users. Then fog Computing is used with the hope that the smart city system can work with small latency values ​​so that the system is more real-time in sending or receiving data.


2020 ◽  
Vol 1 (2) ◽  
pp. 6-13
Author(s):  
Bayu Prastyo ◽  
Faiz Syaikhoni Aziz ◽  
Wahyu Pribadi ◽  
A.N. Afandi

Internet use in Banyumas Regency is now increasingly diverse according to the demands of the needs. The development of communication technology raises various aspects that also develop. For example, the use of the internet for a traffic light control system so that it can be adjusted according to the settings and can be monitored in real time. In the development of communication technology, the term Internet of Things (IoT) emerged as the concept of extending the benefits of internet communication systems to give impulses to other systems. In other words, IoT is used as a communication for remote control and monitoring by utilizing an internet connection. The Internet of Things in the era is now being developed to create an intelligent system for the purposes of controlling various public needs until the concept of the smart city emerges. Basically, smart cities utilize internet connections for many purposes such as controlling CCTV, traffic lights, controlling arm robots in the industry and storing data in hospitals. If the system is carried out directly from the device to the central server, there will be a very long queue of data while the system created requires speed and accuracy of time so that a system is needed that allows sufficient data control and processing to be carried out on network edge users. Then fog Computing is used with the hope that the smart city system can work with small latency values ​​so that the system is more real-time in sending or receiving data


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2994 ◽  
Author(s):  
Bhagya Silva ◽  
Murad Khan ◽  
Changsu Jung ◽  
Jihun Seo ◽  
Diyan Muhammad ◽  
...  

The Internet of Things (IoT), inspired by the tremendous growth of connected heterogeneous devices, has pioneered the notion of smart city. Various components, i.e., smart transportation, smart community, smart healthcare, smart grid, etc. which are integrated within smart city architecture aims to enrich the quality of life (QoL) of urban citizens. However, real-time processing requirements and exponential data growth withhold smart city realization. Therefore, herein we propose a Big Data analytics (BDA)-embedded experimental architecture for smart cities. Two major aspects are served by the BDA-embedded smart city. Firstly, it facilitates exploitation of urban Big Data (UBD) in planning, designing, and maintaining smart cities. Secondly, it occupies BDA to manage and process voluminous UBD to enhance the quality of urban services. Three tiers of the proposed architecture are liable for data aggregation, real-time data management, and service provisioning. Moreover, offline and online data processing tasks are further expedited by integrating data normalizing and data filtering techniques to the proposed work. By analyzing authenticated datasets, we obtained the threshold values required for urban planning and city operation management. Performance metrics in terms of online and offline data processing for the proposed dual-node Hadoop cluster is obtained using aforementioned authentic datasets. Throughput and processing time analysis performed with regard to existing works guarantee the performance superiority of the proposed work. Hence, we can claim the applicability and reliability of implementing proposed BDA-embedded smart city architecture in the real world.


Author(s):  
Asma Zahra ◽  
Mubeen Ghafoor ◽  
Kamran Munir ◽  
Ata Ullah ◽  
Zain Ul Abideen

AbstractSmart video surveillance helps to build more robust smart city environment. The varied angle cameras act as smart sensors and collect visual data from smart city environment and transmit it for further visual analysis. The transmitted visual data is required to be in high quality for efficient analysis which is a challenging task while transmitting videos on low capacity bandwidth communication channels. In latest smart surveillance cameras, high quality of video transmission is maintained through various video encoding techniques such as high efficiency video coding. However, these video coding techniques still provide limited capabilities and the demand of high-quality based encoding for salient regions such as pedestrians, vehicles, cyclist/motorcyclist and road in video surveillance systems is still not met. This work is a contribution towards building an efficient salient region-based surveillance framework for smart cities. The proposed framework integrates a deep learning-based video surveillance technique that extracts salient regions from a video frame without information loss, and then encodes it in reduced size. We have applied this approach in diverse case studies environments of smart city to test the applicability of the framework. The successful result in terms of bitrate 56.92%, peak signal to noise ratio 5.35 bd and SR based segmentation accuracy of 92% and 96% for two different benchmark datasets is the outcome of proposed work. Consequently, the generation of less computational region-based video data makes it adaptable to improve surveillance solution in Smart Cities.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1135
Author(s):  
Gautami Tripathi ◽  
Mohd Abdul Ahad ◽  
Sara Paiva

Technological innovations have enabled the realization of a utopian world where all objects of everyday life, as well as humans, are interconnected to form an “Internet of Things (IoT).” These connected technologies and IoT solutions have led to the emergence of smart cities where all components are converted into a connected smart ecosystem. IoT has envisioned several areas of smart cities including the modern healthcare environment like real-time monitoring, patient information management, ambient-assisted living, ambient-intelligence, anomaly detection, and accelerated sensing. IoT has also brought a breakthrough in the medical domain by integrating stake holders, medical components, and hospitals to bring about holistic healthcare management. The healthcare domain is already witnessing promising IoT-based solutions ranging from embedded mobile applications to wearable devices and implantable gadgets. However, with all these exemplary benefits, there is a need to ensure the safety and privacy of the patient’s personal and medical data communicated to and from the connected devices and systems. For a smart city, it is pertinent to have an accessible, effective, and secure healthcare system for its inhabitants. This paper discusses the various elements of technology-enabled healthcare and presents a privacy-preserved and secure “Smart Medical System (SMS)” framework for the smart city ecosystem. For providing real-time analysis and responses, this paper proposes to use the concept of secured Mobile Edge Computing (MEC) for performing critical time-bound computations on the edge itself. In order to protect the medical and personal data of the patients and to make the data tamper-proof, the concept of blockchain has been used. Finally, this paper highlights the ways to capture and store the medical big data generated from IoT devices and sensors.


Author(s):  
Nicola Mitolo ◽  
Paolo Nesi ◽  
Gianni Pantaleo ◽  
Michela Paolucci

AbstractIn the development of smart cities, there is a great emphasis on setting up so-called Smart City Control Rooms, SCCR. This paper presents Snap4City as a big data smart city platform to support the city decision makers by means of SCCR dashboards and tools reporting in real time the status of several of a city’s aspects. The solution has been adopted in European cities such as Antwerp, Florence, Lonato del Garda, Pisa, Santiago, etc., and it is capable of covering extended geographical areas around the cities themselves: Belgium, Finland, Tuscany, Sardinia, etc. In this paper, a major use case is analyzed describing the workflow followed, the methodologies adopted and the SCCR as the starting point to reproduce the same results in other smart cities, industries, research centers, etc. A Living Lab working modality is promoted and organized to enhance the collaboration among municipalities and public administration, stakeholders, research centers and the citizens themselves. The Snap4City platform has been realized respecting the European Data Protection Regulation (GDPR), and it is capable of processing every day a multitude of periodic and real-time data coming from different providers and data sources. It is therefore able to semantically aggregate the data, in compliance with the Km4City multi-ontology and manage data: (i) having different access policies; and (ii) coming from traditional sources such as Open Data Portals, Web services, APIs and IoT/IoE networks. The aggregated data are the starting point for the services offered not only to the citizens but also to the public administrations and public-security service managers, enabling them to view a set of city dashboards ad hoc composed on their needs, for example, enabling them to modify and monitor public transportation strategies, offering the public services actually needed by citizens and tourists, monitor the air quality and traffic status to establish, if impose or not, traffic restrictions, etc. All the data and the new knowledge produced by the data analytics of the Snap4City platform can also be accessed, observing the permissions on each kind of data, thanks to the presence of an APIs complex system.


Sign in / Sign up

Export Citation Format

Share Document