scholarly journals The role of dynamics in total ozone deviations from their long-term mean over the Northern Hemisphere

1999 ◽  
Vol 17 (2) ◽  
pp. 231-241 ◽  
Author(s):  
K. Petzoldt

Abstract. Total ozone anomalies (deviation from the long-term mean) are created by anomalous circulation patterns. The dynamically produced ozone anomalies can be estimated from known circulation parameters in the layer between the tropopause and the middle stratosphere by means of statistics. Satellite observations of ozone anomalies can be compared with those expected from dynamics. Residual negative anomalies may be due to chemical ozone destruction. The statistics are derived from a 14 year data set of TOMS (Total Ozone Mapping Spectrometer January 1979-Dec. 1992) and corresponding 300 hPa geopotential (for the tropopause height) together with 30 hPa temperature (for stratospheric waves) at 60°N. The correlation coefficient for the linear multiple regression between total ozone (dependent variable) and the dynamical parameters (independent variables) is 0.88 for the zonal deviations in the winter of the Northern Hemisphere. Zonal means are also significantly dependent on circulation parameters, besides showing the known negative trend function of total ozone observed by TOMS. The significant linear trend for 60°N is \\sim3 DU/year in the winter months taking into account the dependence on the dynamics between the tropopause region and the mid-stratosphere. The highest correlation coefficient for the monthly mean total ozone anomalies is reached in November with 0.94.Key words. Atmospheric composition and structure (middle atmosphere · composition and chemistry) · Meteorology and atmospheric dynamics (middle atmosphere dynamics).

2018 ◽  
Author(s):  
Robin Wing ◽  
Alain Hauchecorne ◽  
Philippe Keckhut ◽  
Sophie Godin-Beekmann ◽  
Sergey Khaykin ◽  
...  

Abstract. The objective of this paper and its companion (Wing et al., 2018b) is to show that ground based lidar temperatures are a stable, accurate and precise dataset for use in validating satellite temperatures at high vertical resolution. Long-term lidar observations of the middle atmosphere have been conducted at the Observatoire de Haute-Provence (OHP), located in southern France (43.93° N, 5.71° E), since 1978. Making use of 20 years of high-quality co-located lidar measurements we have shown that lidar temperatures calculated using the Rayleigh technique at 532 nm are statistically identical to lidar temperatures calculated from the non-absorbing 355 nm channel of a Differential Absorption Lidar (DIAL) system. This result is of interest to members of the Network for the Detection of Atmospheric Composition Change (NDACC) ozone lidar community seeking to produce validated temperature products. Additionally, we have addressed previously published concerns of lidar-satellite relative warm bias in comparisons of Upper Mesospheric and Lower Thermospheric (UMLT) temperature profiles. We detail a data treatment algorithm which minimizes known errors due to data selection procedures, a priori choices, and initialization parameters inherent in the lidar retrieval. Our algorithm results in a median cooling of the lidar calculated absolute temperature profile by 20 K at 90 km altitude with respect to the standard OHP NDACC lidar temperature algorithm. The confidence engendered by the long-term cross-validation of two independent lidars and the improved lidar temperature dataset is exploited in (Wing et al., 2018b) for use in multi-year satellite validations.


2018 ◽  
Vol 11 (10) ◽  
pp. 5531-5547 ◽  
Author(s):  
Robin Wing ◽  
Alain Hauchecorne ◽  
Philippe Keckhut ◽  
Sophie Godin-Beekmann ◽  
Sergey Khaykin ◽  
...  

Abstract. The objective of this paper and its companion (Wing et al., 2018) is to show that ground-based lidar temperatures are a stable, accurate, and precise data set for use in validating satellite temperatures at high vertical resolution. Long-term lidar observations of the middle atmosphere have been conducted at the Observatoire de Haute-Provence (OHP), located in southern France (43.93∘ N, 5.71∘ E), since 1978. Making use of 20 years of high-quality co-located lidar measurements, we have shown that lidar temperatures calculated using the Rayleigh technique at 532 nm are statistically identical to lidar temperatures calculated from the non-absorbing 355 nm channel of a differential absorption lidar (DIAL) system. This result is of interest to members of the Network for the Detection of Atmospheric Composition Change (NDACC) ozone lidar community seeking to produce validated temperature products. Additionally, we have addressed previously published concerns of lidar–satellite relative warm bias in comparisons of upper-mesospheric and lower-thermospheric (UMLT) temperature profiles. We detail a data treatment algorithm which minimizes known errors due to data selection procedures, a priori choices, and initialization parameters inherent in the lidar retrieval. Our algorithm results in a median cooling of the lidar-calculated absolute temperature profile by 20 K at 90 km altitude with respect to the standard OHP NDACC lidar temperature algorithm. The confidence engendered by the long-term cross-validation of two independent lidars and the improved lidar temperature data set is exploited in Wing et al. (2018) for use in multi-year satellite validations.


2016 ◽  
Author(s):  
Mike J. Newland ◽  
Patricia Martinerie ◽  
Emmanuel Witrant ◽  
Detlev Helmig ◽  
David R. Worton ◽  
...  

Abstract. The NOX (NO and NO2) and HOX (OH and HO2) budgets of the atmosphere exert a major influence on atmospheric composition, controlling removal of primary pollutants and formation of a wide range of secondary products, including ozone, that can influence human health and climate. However, there remain large uncertainties in the changes to these budgets over recent decades. Due to their short atmospheric lifetimes, NOX and HOX are highly variable in space and time, and so the measurements of these species are of very limited value for examining long term, large scale changes to their budgets. Here, we take an alternative approach by examining long-term atmospheric trends of alkyl nitrates, the formation of which is dependent on the atmospheric NO / HO2 ratio. We derive long term trends in the alkyl nitrates from measurements in firn air from the NEEM site, Greenland. Their mixing ratios increased by a factor of 4–5 between the 1970s and 1990s. This was followed by a steep decline to the sampling date of 2008. Moreover, we examine how the trends in the alkyl nitrates compare to similarly derived trends in their parent alkanes (i.e. the alkanes which, when oxidised in the presence of NOX, lead to the formation of the alkyl nitrates). The ratios of the alkyl nitrates to their parent alkanes increase from around 1970 to the late 1990's consistent with large changes to the [NO] / [HO2] ratio in the northern hemisphere atmosphere during this period. These could represent historic changes to NOX sources and sinks. Alternatively, they could represent changes to concentrations of the hydroxyl radical, OH, or to the transport time of the air masses from source regions to the Arctic.


2011 ◽  
Vol 11 (12) ◽  
pp. 5701-5717 ◽  
Author(s):  
J. Fiedler ◽  
G. Baumgarten ◽  
U. Berger ◽  
P. Hoffmann ◽  
N. Kaifler ◽  
...  

Abstract. Noctilucent clouds (NLC) have been measured by the Rayleigh/Mie/Raman-lidar at the ALOMAR research facility in Northern Norway (69° N, 16° E). From 1997 to 2010 NLC were detected during more than 1850 h on 440 different days. Colocated MF-radar measurements and calculations with the Leibniz-Institute Middle Atmosphere (LIMA-) model are used to characterize the background atmosphere. Temperatures as well as horizontal winds at 83 km altitude show distinct differences during NLC observations compared to when NLC are absent. The seasonally averaged temperature is lower and the winds are stronger westward when NLC are detected. The wind separation is a robust feature as it shows up in measurements as well as in model results and it is consistent with the current understanding that lower temperatures support the existence of ice particles. For the whole 14-year data set there is no statistically significant relation between NLC occurrence and solar Lyman-α radiation. On the other hand NLC occurrence and temperatures at 83 km show a significant anti-correlation, which suggests that the thermal state plays a major role for the existence of ice particles and dominates the pure Lyman-α influence on water vapor during certain years. We find the seasonal mean NLC altitudes to be correlated to both Lyman-α radiation and temperature. NLC above ALOMAR are strongly influenced by atmospheric tides. The cloud water content varies by a factor of 2.8 over the diurnal cycle. Diurnal and semidiurnal amplitudes and phases show some pronounced year-to-year variations. In general, amplitudes as well as phases vary in a different manner. Amplitudes change by a factor of more than 3 and phases vary by up to 7 h. Such variability could impact long-term NLC observations which do not cover the full diurnal cycle.


2012 ◽  
Vol 12 (5) ◽  
pp. 12357-12389
Author(s):  
F. Hendrick ◽  
E. Mahieu ◽  
G. E. Bodeker ◽  
K. F. Boersma ◽  
M. P. Chipperfield ◽  
...  

Abstract. The trend in stratospheric NO2 column at the NDACC (Network for the Detection of Atmospheric Composition Change) station of Jungfraujoch (46.5° N, 8.0° E) is assessed using ground-based FTIR and zenith-scattered visible sunlight SAOZ measurements over the period 1990 to 2009 as well as a composite satellite nadir data set constructed from ERS-2/GOME, ENVISAT/SCIAMACHY, and METOP-A/GOME-2 observations over the 1996–2009 period. To calculate the trends, a linear least squares regression model including explanatory variables for a linear trend, the mean annual cycle, the quasi-biennial oscillation (QBO), solar activity, and stratospheric aerosol loading is used. For the 1990–2009 period, statistically indistinguishable trends of −3.7 ± 1.1%/decade and −3.6 ± 0.9%/decade are derived for the SAOZ and FTIR NO2 column time series, respectively. SAOZ, FTIR, and satellite nadir data sets show a similar decrease over the 1996–2009 period, with trends of −2.4 ± 1.1%/decade, −4.3 ± 1.4%/decade, and −3.6 ± 2.2%/decade, respectively. The fact that these declines are opposite in sign to the globally observed +2.5%/decade trend in N2O, suggests that factors other than N2O are driving the evolution of stratospheric NO2 at northern mid-latitudes. Possible causes of the decrease in stratospheric NO2 columns have been investigated. The most likely cause is a change in the NO2/NO partitioning in favor of NO, due to a possible stratospheric cooling and a decrease in stratospheric chlorine content, the latter being further confirmed by the negative trend in the ClONO2 column derived from FTIR observations at Jungfraujoch. Decreasing ClO concentrations slows the NO + ClO → NO2 + Cl reaction and a stratospheric cooling slows the NO + O3 → NO2 + O2 reaction, leaving more NOx in the form of NO. The slightly positive trends in ozone estimated from ground- and satellite-based data sets are also consistent with the decrease of NO2 through the NO2 + O3 → NO3 + O2 reaction. Finally, we cannot rule out the possibility that a strengthening of the Dobson-Brewer circulation, which reduces the time available for N2O photolysis in the stratosphere, could also contribute to the observed decline in stratospheric NO2 above Jungfraujoch.


1994 ◽  
Vol 12 (10/11) ◽  
pp. 1065-1070 ◽  
Author(s):  
V. Mussino ◽  
O. Borello Filisetti ◽  
M. Storini ◽  
H. Nevanlinna

Abstract. Monthly averages of the Helsinki Ak-values have been reduced to the equivalent aa-indices to extend the aa-data set back to 1844. A periodicity of about five cycles was found for the correlation coefficient (r) between geomagnetic indices and sunspot numbers for the ascending phases of sunspot cycles 9 to 22, confirming previous findings based on a minor number of sunspot cycles. The result is useful to researchers in topics related to solar-terrestrial physics, particularly for the interpretation of long-term trends in geomagnetic activity during the past, and to forecast geomagnetic activity levels in the future.


2002 ◽  
Vol 20 (2) ◽  
pp. 247-255 ◽  
Author(s):  
K. Eerme ◽  
U. Veismann ◽  
R. Koppel

Abstract. The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS) data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO) corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May) and summer (June–August) total ozone have the best correlation (coefficient 0.7) in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects) – Meteorology and atmospheric dynamics (climatology)


2012 ◽  
Vol 12 (18) ◽  
pp. 8851-8864 ◽  
Author(s):  
F. Hendrick ◽  
E. Mahieu ◽  
G. E. Bodeker ◽  
K. F. Boersma ◽  
M. P. Chipperfield ◽  
...  

Abstract. The trend in stratospheric NO2 column at the NDACC (Network for the Detection of Atmospheric Composition Change) station of Jungfraujoch (46.5° N, 8.0° E) is assessed using ground-based FTIR and zenith-scattered visible sunlight SAOZ measurements over the period 1990 to 2009 as well as a composite satellite nadir data set constructed from ERS-2/GOME, ENVISAT/SCIAMACHY, and METOP-A/GOME-2 observations over the 1996–2009 period. To calculate the trends, a linear least squares regression model including explanatory variables for a linear trend, the mean annual cycle, the quasi-biennial oscillation (QBO), solar activity, and stratospheric aerosol loading is used. For the 1990–2009 period, statistically indistinguishable trends of −3.7 ± 1.1% decade−1 and −3.6 ± 0.9% decade−1 are derived for the SAOZ and FTIR NO2 column time series, respectively. SAOZ, FTIR, and satellite nadir data sets show a similar decrease over the 1996–2009 period, with trends of −2.4 ± 1.1% decade−1, −4.3 ± 1.4% decade−1, and −3.6 ± 2.2% decade−1, respectively. The fact that these declines are opposite in sign to the globally observed +2.5% decade−1 trend in N2O, suggests that factors other than N2O are driving the evolution of stratospheric NO2 at northern mid-latitudes. Possible causes of the decrease in stratospheric NO2 columns have been investigated. The most likely cause is a change in the NO2/NO partitioning in favor of NO, due to a possible stratospheric cooling and a decrease in stratospheric chlorine content, the latter being further confirmed by the negative trend in the ClONO2 column derived from FTIR observations at Jungfraujoch. Decreasing ClO concentrations slows the NO + ClO → NO2 + Cl reaction and a stratospheric cooling slows the NO + O3 → NO2 + O2 reaction, leaving more NOx in the form of NO. The slightly positive trends in ozone estimated from ground- and satellite-based data sets are also consistent with the decrease of NO2 through the NO2 + O3 → NO3 + O2 reaction. Finally, we cannot rule out the possibility that a strengthening of the Dobson-Brewer circulation, which reduces the time available for N2O photolysis in the stratosphere, could also contribute to the observed decline in stratospheric NO2 above Jungfraujoch.


2013 ◽  
Vol 13 (17) ◽  
pp. 8643-8650 ◽  
Author(s):  
B. J. Connor ◽  
T. Mooney ◽  
G. E. Nedoluha ◽  
J. W. Barrett ◽  
A. Parrish ◽  
...  

Abstract. We present a re-analysis of upper stratospheric ClO measurements from the ground-based millimeter-wave instrument from January 1992 to February 2012. These measurements are made as part of the Network for the Detection of Atmospheric Composition Change (NDACC) from Mauna Kea, Hawaii, (19.8° N, 204.5° E). Here, we use daytime and nighttime measurements together to form a day–night spectrum, from which the difference in the day and night profiles is retrieved. These results are then compared to the day–night difference profiles from the Upper Atmosphere Research Satellite (UARS) and Aura Microwave Limb Sounder (MLS) instruments. We also compare them to our previous analyses of the same data, in which we retrieved the daytime ClO profile. The major focus will be on comparing the year-to-year and long-term changes in ClO derived by the two analysis methods, and comparing these results to the long-term changes reported by others. We conclude that the re-analyzed data set has less short-term variability and exhibits a more constant long-term trend that is more consistent with other observations. Data from 1995 to 2012 indicate a linear decline of mid-stratospheric ClO of 0.64 ± 0.15% yr−1 (2σ).


Sign in / Sign up

Export Citation Format

Share Document