scholarly journals Stratospheric background aerosol and polar cloud observations by laser backscattersonde within the framework of the European project "Stratospheric Regular Sounding"

1999 ◽  
Vol 17 (10) ◽  
pp. 1352-1360 ◽  
Author(s):  
A. Adriani ◽  
F. Cairo ◽  
L. Pulvirenti ◽  
F. Cardillo ◽  
M. Viterbini ◽  
...  

Abstract. The Stratospheric Regular Sounding project was planned to measure regularly the vertical profiles of several tracers like ozone, water vapor, NOx, ClOx and BrOx radicals, aerosol, pressure and temperature, at three latitudes, to discriminate between the transport and photochemical terms which control their distribution. As part of this project, the "Istituto di Fisica dell'Atmosfera" launched nine laser backscattersondes (LABS) on board stratospheric balloons to make observations of background aerosol and PSCs. LABS was launched with an optical particle counter operated by the University of Wyoming. Observations have been performed in the arctic, mid-latitudes and tropical regions in different seasons. Polar stratospheric clouds have been observed in areas inside and outside the polar vortex edge. A background aerosol was observed both in mid-latitudes and in arctic regions with a backscattering ratio of 1.2 at 692 nm. Very stratified aerosol layers, possibly transported into the lower stratosphere by deep convective systems, have been observed in the lower stratosphere between 20 and 29 km in the tropics in the Southern Hemisphere. Key words. Atmospheric composition and structure (aerosols and particles; middle atmosphere – composition and chemistry; instruments and techniques)

2003 ◽  
Vol 21 (4) ◽  
pp. 1057-1069 ◽  
Author(s):  
M. Gerding ◽  
G. Baumgarten ◽  
U. Blum ◽  
J. P. Thayer ◽  
K.-H. Fricke ◽  
...  

Abstract. By the beginning of winter 2000/2001, a mysterious stratospheric aerosol layer had been detected by four different Arctic lidar stations. The aerosol layer was observed first on 16 November 2000, at an altitude of about 38 km near Søndre Strømfjord, Greenland (67° N, 51° W) and on 19 November 2000, near Andenes, Norway (69°  N, 16°  E). Subsequently, in early December 2000, the aerosol layer was observed near Kiruna, Sweden (68°  N, 21°  E) and Ny-Ålesund, Spitsbergen (79°  N, 12°  E). No mid-latitude lidar station observed the presence of aerosols in this altitude region. The layer persisted throughout the winter 2000/2001, at least up to 12 February 2001. In November 2000, the backscatter ratio at a wavelength of 532 nm was up to 1.1, with a FWHM of about 2.5 km. By early February 2001, the layer had sedimented from an altitude of 38 km to about 26 km. Measurements at several wavelengths by the ALOMAR and Koldewey lidars indicate the particle size was between 30 and 50 nm. Depolarisation measurements reveal that the particles in the layer are aspherical, hence solid. In the mid-stratosphere, the ambient atmospheric temperature was too high to support in situ formation or existence of cloud particles consisting of ice or an acid-water solution. Furthermore, in the year 2000 there was no volcanic eruption, which could have injected aerosols into the upper stratosphere. Therefore, other origins of the aerosol, such as meteoroid debris, condensed rocket fuel, or aerosols produced under the influence of charged solar particles, will be discussed in the paper. Trajectory calculations illustrate the path of the aerosol cloud within the polar vortex and are used to link the observations at the different lidar sites. From the descent rate of  the layer and particle sedimentation rates, the mean down-ward motion of air within the polar vortex was estimated to be about 124 m/d between 35 and 30 km, with higher values at the edge of the vortex.Key words. Atmospheric composition and structure (aerosols and particles; middle atmosphere composition and chemistry) – meteorology and atmospheric dynamics (middle atmosphere dynamics)


2003 ◽  
Vol 21 (8) ◽  
pp. 1869-1878
Author(s):  
C.-F. Enell ◽  
U. Brändström ◽  
B. Gustavsson ◽  
S. Kirkwood ◽  
K. Stebel ◽  
...  

Abstract. The formation of polar stratospheric clouds (PSCs) is closely related to wave activity on different scales since waves propagating into the stratosphere perturb the temperature profile. We present here a case study of the development of visible PSCs (mother-of-pearl clouds), appearing at the polar vortex edge on 9 January 1997, under-taken by means of ground-based cameras. It is shown that the presence of stratospheric clouds may be detected semi-automatically and that short-term dynamics such as altitude variations can be tracked in three dimensions. The PSC field showed distinct features separated by approximately 20 km, which implies wave-induced temperature variations on that scale. The wave-induced characteristics were further emphasised by the fact that the PSCs moved within a sloping spatial surface. The appearance of visible mother-of-pearl clouds seems to be related to leewave-induced cooling of air masses, where the synoptic temperature has been close to (but not necessarily below) the threshold temperatures for PSC condensation.Key words. Atmospheric composition and structure (aerosols and particles) – Meteorology and atmospheric dynamics (middle atmosphere dynamics; instruments and techniques)


2014 ◽  
Vol 14 (3) ◽  
pp. 3563-3581
Author(s):  
K. Pérot ◽  
J. Urban ◽  
D. P. Murtagh

Abstract. The middle atmosphere has been affected by an exceptionally strong midwinter stratospheric sudden warming (SSW) during the Arctic winter 2012/2013. These unusual meteorological conditions led to a breakdown of the polar vortex, followed by the reformation of a strong upper stratospheric vortex associated with particularly efficient descent of air. Measurements by the Sub-Millimetre Radiometer (SMR), on board the Odin satellite, show that very large amounts of nitric oxide (NO), produced by Energetic Particle Precipitation (EPP) in the mesosphere/lower thermosphere (MLT), could thus enter the polar stratosphere in early 2013. The mechanism referring to the downward transport of EPP generated-NOx during winter is generally called the EPP indirect effect. SMR observed up to 20 times more NO in the upper stratosphere than the average NO measured at the same latitude, pressure and time during three previous winters where no mixing between mesospheric and stratospheric air was noticeable. This event turned out to be an unprecedently strong case of this effect. Our study is based on a comparison with the Arctic winter 2008/2009, when a similar situation was observed and which was so far considered as a record-breaking winter for this kind of events. This outstanding situation is the result of the combination between a relatively high geomagnetic activity and an unusually high dynamical activity, which makes this case a prime example to study the EPP impacts on the atmospheric composition.


2005 ◽  
Vol 5 (2) ◽  
pp. 547-562 ◽  
Author(s):  
K. Krüger ◽  
U. Langematz ◽  
J. L. Grenfell ◽  
K. Labitzke

Abstract. The purpose of this study is to investigate horizontal transport processes in the winter stratosphere using data with a resolution relevant for chemistry and climate modeling. For this reason the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM) with its model top at 83 km altitude, increased horizontal resolution T42 and the semi-Lagrangian transport scheme for advecting passive tracers is used. A new approach of this paper is the classification of specific transport phenomena within the stratosphere into tropical-subtropical streamers (e.g. Offermann et al., 1999) and polar vortex extrusions hereafter called polar vortex streamers. To investigate the role played by these large-scale structures on the inter-annual and seasonal variability of transport processes in northern mid-latitudes, the global occurrence of such streamers was calculated based on a 10-year model climatology, concentrating on the existence of the Arctic polar vortex. For the identification and counting of streamers, the new method of zonal anomaly was chosen. The analysis of the months October-May yielded a maximum occurrence of tropical-subtropical streamers during Arctic winter and spring in the middle and upper stratosphere. Synoptic maps revealed highest intensities in the subtropics over East Asia with a secondary maximum over the Atlantic in the northern hemisphere. Furthermore, tropical-subtropical streamers exhibited a higher occurrence than polar vortex streamers, indicating that the subtropical barrier is more permeable than the polar vortex barrier (edge) in the model, which is in good correspondence with observations (e.g. Plumb, 2002; Neu et al., 2003). Interesting for the total ozone decrease in mid-latitudes is the consideration of the lower stratosphere for tropical-subtropical streamers and the stratosphere above ~20 km altitude for polar vortex streamers, where strongest ozone depletion is observed at polar latitudes (WMO, 2003). In the lower stratosphere the FUB-CMAM simulated a climatological maximum of 10% occurrence of tropical-subtropical streamers over East-Asia/West Pacific and the Atlantic during early- and mid-winter. The results of this paper demonstrate that stratospheric streamers e.g. large-scale, tongue-like structures transporting tropical-subtropical and polar vortex air masses into mid-latitudes occur frequently during Arctic winter. They can therefore play a significant role on the strength and variability of the observed total ozone decrease at mid-latitudes and should not be neglected in future climate change studies.


2019 ◽  
Vol 19 (15) ◽  
pp. 9927-9947 ◽  
Author(s):  
Franziska Schranz ◽  
Brigitte Tschanz ◽  
Rolf Rüfenacht ◽  
Klemens Hocke ◽  
Mathias Palm ◽  
...  

Abstract. We used 3 years of water vapour and ozone measurements to study the dynamics in the Arctic middle atmosphere. We investigated the descent of water vapour within the polar vortex, major and minor sudden stratospheric warmings and periodicities at Ny-Ålesund. The measurements were performed with the two ground-based microwave radiometers MIAWARA-C and GROMOS-C, which have been co-located at the AWIPEV research base at Ny-Ålesund, Svalbard (79∘ N, 12∘ E), since September 2015. Both instruments belong to the Network for the Detection of Atmospheric Composition Change (NDACC). The almost continuous datasets of water vapour and ozone are characterized by a high time resolution of the order of hours. A thorough intercomparison of these datasets with models and measurements from satellite, ground-based and in situ instruments was performed. In the upper stratosphere and lower mesosphere the MIAWARA-C water vapour profiles agree within 5 % with SD-WACCM simulations and ACE-FTS measurements on average, whereas AuraMLS measurements show an average offset of 10 %–15 % depending on altitude but constant in time. Stratospheric GROMOS-C ozone profiles are on average within 6 % of the SD-WACCM model, the AuraMLS and ACE-FTS satellite instruments and the OZORAM ground-based microwave radiometer which is also located at Ny-Ålesund. During these first 3 years of the measurement campaign typical phenomena of the Arctic middle atmosphere took place, and we analysed their signatures in the water vapour and ozone measurements. Two major sudden stratospheric warmings (SSWs) took place in March 2016 and February 2018 and three minor warmings were observed in early 2017. Ozone-rich air was brought to the pole and during the major warmings ozone enhancements of up to 4 ppm were observed. The reversals of the zonal wind accompanying a major SSW were captured in the GROMOS-C wind profiles which are retrieved from the ozone spectra. After the SSW in February 2018 the polar vortex re-established and the water vapour descent rate in the mesosphere was 355 m d−1. Inside of the polar vortex in autumn we found the descent rate of mesospheric water vapour from MIAWARA-C to be 435 m d−1 on average. We find that the water vapour descent rate from SD-WACCM and the vertical velocity w‾* of the residual mean meridional circulation from SD-WACCM are substantially higher than the descent rates of MIAWARA-C. w‾* and the zonal mean water vapour descent rate from SD-WACCM agree within 10 % after the SSW, whereas in autumn w‾* is up to 40 % higher. We further present an overview of the periodicities in the water vapour and ozone measurements and analysed seasonal and interannual differences.


2000 ◽  
Vol 18 (3) ◽  
pp. 332-336 ◽  
Author(s):  
V. C. Roldugin ◽  
M. I. Beloglazov ◽  
G. F. Remenets

Abstract. Eight periods of relativistic electron precipitation (REP) with electron energies of more than 300 keV are identified from VLF data (10-14 kHz) monitored along the Aldra (Norway) - Apatity (Kola peninsula) radio trace. In these cases, anomalous ionization below 55-50 km occurred without disturbing the higher layers of the ionosphere. The daily total ozone values in Murmansk for six days before and six days after the REP events are compared. In seven of eight events a decrease in the total ozone of about 20 DU is observed. In one event of 25 March, 1986, the mean total ozone value for six days before the REP is bigger than that for six days after, but this a case of an extremely high ozone increase (144 DU during the six days). However, on days 3 and 4 there was a minimum of about 47 DU with regard to REP days, so this case also confirms the concept of the ozone decrease after REP. The difference between mean ozone values for periods six days before and six days after the REPs was found also for 23 points in Arctic on TOMS data. The difference was negative only in Murmansk longitudinal sector. Along the meridian of the trace it was negative at high latitudes in both hemispheres and was near zero at low latitudes.Key words: Atmospheric composition and structure (middle atmosphere - composition and chemistry) - Meteorology and atmospheric dynamics (polar meteorology)


2003 ◽  
Vol 21 (11) ◽  
pp. 2175-2183 ◽  
Author(s):  
J. Ajtic ◽  
B. J. Connor ◽  
C. E. Randall ◽  
B. N. Lawrence ◽  
G. E. Bodeker ◽  
...  

Abstract. An ozonesonde profile over the Network for Detection of Stratospheric Change (NDSC) site at Lauder (45.0° S, 169.7° E), New Zealand, for 24 December 1998 showed atypically low ozone centered around 24 km altitude (600 K potential temperature). The origin of the anomaly is explained using reverse domain filling (RDF) calculations combined with a PV/O3 fitting technique applied to ozone measurements from the Polar Ozone and Aerosol Measurement (POAM) III instrument. The RDF calculations for two isentropic surfaces, 550 and 600 K, show that ozone-poor air from the Antarctic polar vortex reached New Zealand on 24–26 December 1998. The vortex air on the 550 K isentrope originated in the ozone hole region, unlike the air on 600 K where low ozone values were caused by dynamical effects. High-resolution ozone maps were generated, and their examination shows that a vortex remnant situated above New Zealand was the cause of the altered ozone profile on 24 December. The maps also illustrate mixing of the vortex filaments into southern midlatitudes, whereby the overall mid-latitude ozone levels were decreased.Key words. Atmospheric composition and structure (middle atmosphere composition and chemistry) – Meteorology and atmospheric dynamics (middle atmosphere dynamics)


2014 ◽  
Vol 14 (15) ◽  
pp. 8009-8015 ◽  
Author(s):  
K. Pérot ◽  
J. Urban ◽  
D. P. Murtagh

Abstract. The middle atmosphere was affected by an exceptionally strong midwinter stratospheric sudden warming (SSW) during the Arctic winter 2012/2013. These unusual meteorological conditions led to a breakdown of the polar vortex, followed by the reformation of a strong upper stratospheric vortex associated with particularly efficient descent of air. Measurements by the submillimetre radiometer (SMR), on board the Odin satellite, show that very large amounts of nitric oxide (NO), produced by energetic particle precipitation (EPP) in the mesosphere/lower thermosphere (MLT), could thus enter the polar stratosphere in early 2013. The mechanism referring to the downward transport of EPP-generated NOx during winter is generally called the EPP indirect effect. SMR observed up to 20 times more NO in the upper stratosphere than the average NO measured at the same latitude, pressure and time during three previous winters where no mixing between mesospheric and stratospheric air was noticeable. This event turned out to be the strongest in the aeronomy-only period of SMR (2007–present). Our study is based on a comparison with the Arctic winter 2008/2009, when a similar situation was observed. This outstanding situation is the result of the combination of a relatively high geomagnetic activity and an unusually high dynamical activity, which makes this case a prime example to study the EPP impacts on the atmospheric composition.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


Sign in / Sign up

Export Citation Format

Share Document