Unprepared surface areas, accumulated hard tissue debris, and dentinal crack formation after preparation using reciprocating or rotary instruments: a study in human cadavers

Author(s):  
Andrea F. Campello ◽  
Marília F. Marceliano-Alves ◽  
José F. Siqueira ◽  
Simone C. Fonseca ◽  
Ricardo T. Lopes ◽  
...  
Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 315 ◽  
Author(s):  
Martina Greiner ◽  
Lurdes Férnandez-Díaz ◽  
Erika Griesshaber ◽  
Moritz Zenkert ◽  
Xiaofei Yin ◽  
...  

We present results of bioaragonite to apatite conversion in bivalve, coral and cuttlebone skeletons, biological hard materials distinguished by specific microstructures, skeletal densities, original porosities and biopolymer contents. The most profound conversion occurs in the cuttlebone of the cephalopod Sepia officinalis, the least effect is observed for the nacreous shell portion of the bivalve Hyriopsis cumingii. The shell of the bivalve Arctica islandica consists of cross-lamellar aragonite, is dense at its innermost and porous at the seaward pointing shell layers. Increased porosity facilitates infiltration of the reaction fluid and renders large surface areas for the dissolution of aragonite and conversion to apatite. Skeletal microstructures of the coral Porites sp. and prismatic H. cumingii allow considerable conversion to apatite. Even though the surface area in Porites sp. is significantly larger in comparison to that of prismatic H. cumingii, the coral skeleton consists of clusters of dense, acicular aragonite. Conversion in the latter is sluggish at first as most apatite precipitates only onto its surface area. However, the process is accelerated when, in addition, fluids enter the hard tissue at centers of calcification. The prismatic shell portion of H. cumingii is readily transformed to apatite as we find here an increased porosity between prisms as well as within the membranes encasing the prisms. In conclusion, we observe distinct differences in bioaragonite to apatite conversion rates and kinetics depending on the feasibility of the reaction fluid to access aragonite crystallites. The latter is dependent on the content of biopolymers within the hard tissue, their feasibility to be decomposed, the extent of newly formed mineral surface area and the specific biogenic ultra- and microstructures.


Author(s):  
R.F. Dodson ◽  
L.W-F Chu ◽  
N. Ishihara

The extent of damage surrounding an implanted electrode in the cerebral cortex is a question of significant importance with regard to attaining consistency and validity of physiological recordings. In order to determine the extent of such tissue changes, 150 micron diameter platinum electrodes were implanted in the cortex of four adult baboons, and after eight days the animals were sacrificed by whole body perfusion with a 3% glutaraldehyde in 0.1M phosphate fixative.The calvarium was carefully removed and the electrode tracts were readily discernible in the firm, glutaraldehyde fixed tissue.Careful dissection of the zone of the electrode tract resulted in a small block which was further sectioned into tip, mid-tract and surface areas. Ultrastructurally, damage extended from the electrode sheath to the greatest extent of from 0.2 to 3.5 mm.


Author(s):  
Adrian F. van Dellen

The morphologic pathologist may require information on the ultrastructure of a non-specific lesion seen under the light microscope before he can make a specific determination. Such lesions, when caused by infectious disease agents, may be sparsely distributed in any organ system. Tissue culture systems, too, may only have widely dispersed foci suitable for ultrastructural study. In these situations, when only a few, small foci in large tissue areas are useful for electron microscopy, it is advantageous to employ a methodology which rapidly selects a single tissue focus that is expected to yield beneficial ultrastructural data from amongst the surrounding tissue. This is in essence what "LIFTING" accomplishes. We have developed LIFTING to a high degree of accuracy and repeatability utilizing the Microlift (Fig 1), and have successfully applied it to tissue culture monolayers, histologic paraffin sections, and tissue blocks with large surface areas that had been initially fixed for either light or electron microscopy.


Author(s):  
Z. L. Wang ◽  
J. Bentley

Studying the behavior of surfaces at high temperatures is of great importance for understanding the properties of ceramics and associated surface-gas reactions. Atomic processes occurring on bulk crystal surfaces at high temperatures can be recorded by reflection electron microscopy (REM) in a conventional transmission electron microscope (TEM) with relatively high resolution, because REM is especially sensitive to atomic-height steps.Improved REM image resolution with a FEG: Cleaved surfaces of a-alumina (012) exhibit atomic flatness with steps of height about 5 Å, determined by reference to a screw (or near screw) dislocation with a presumed Burgers vector of b = (1/3)<012> (see Fig. 1). Steps of heights less than about 0.8 Å can be clearly resolved only with a field emission gun (FEG) (Fig. 2). The small steps are formed by the surface oscillating between the closely packed O and Al stacking layers. The bands of dark contrast (Fig. 2b) are the result of beam radiation damage to surface areas initially terminated with O ions.


Author(s):  
M. Marko ◽  
A. Leith ◽  
D. Parsons

The use of serial sections and computer-based 3-D reconstruction techniques affords an opportunity not only to visualize the shape and distribution of the structures being studied, but also to determine their volumes and surface areas. Up until now, this has been done using serial ultrathin sections.The serial-section approach differs from the stereo logical methods of Weibel in that it is based on the Information from a set of single, complete cells (or organelles) rather than on a random 2-dimensional sampling of a population of cells. Because of this, it can more easily provide absolute values of volume and surface area, especially for highly-complex structures. It also allows study of individual variation among the cells, and study of structures which occur only infrequently.We have developed a system for 3-D reconstruction of objects from stereo-pair electron micrographs of thick specimens.


Author(s):  
Cesar D. Fermin ◽  
Hans-Peter Zenner

Contraction of outer and inner hair cells (OHC&IHC) in the Organ of Corti (OC) of the inner ear is necessary for sound transduction. Getting at HC in vivo preparations is difficult. Thus, isolated HCs have been used to study OHC properties. Even though viability has been shown in isolated (iOHC) preparations by good responses to current and cationic stimulation, the contribution of adjoining cells can not be explained with iOHC preparations. This study was undertaken to examine changes in the OHC after expossure of the OHC to high concentrations of potassium (K) and sodium (Na), by carefully immersing the OC in either artifical endolymph or perilymph. After K and Na exposure, OCs were fixed with 3% glutaraldehyde, post-fixed in osmium, separated into base, middle and apex and embedded in Araldite™. One μm thick sections were prepared for analysis with the light and E.M. Cross sectional areas were measured with Bioquant™ software.Potassium and sodium both cause isolated guinea pig OHC to contract. In vivo high K concentration may cause uncontrolled and sustained contractions that could contribute to Meniere's disease. The behavior of OHC in the vivo setting might be very different from that of iOHC. We show here changes of the cell cytosol and cisterns caused by K and Na to OHC in situs. The table below shows results from cross sectional area measurements of OHC from OC that were exposed to either K or Na. As one would expect, from the anatomical arrangement of the OC, OHC#l that are supported by rigid tissue would probably be displaced (move) less than those OHC located away from the pillar. Surprisingly, cells in the middle turn of the cochlea changed their surface areas more than those at either end of the cochlea. Moreover, changes in surface area do not seem to differ between K and Na treated OCs.


Author(s):  
S. I. Coleman ◽  
W. J. Dougherty

In the cellular secretion theory of mineral deposition, extracellular matrix vesicles are believed to play an integral role in hard tissue mineralization (1). Membrane limited matrix vesicles arise from the plasma membrane of epiphyseal chondrocytes and tooth odontoblasts by a budding process (2, 3). Nutritional and hormonal factors have been postulated to play essential roles in mineral deposition and apparently have a direct effect on matrix vesicles of calcifying cartilage as concluded by Anderson and Sajdera (4). Immature (75-85 gm) Long-Evans hooded rats were hypophysectomized by the parapharyngeal approach and maintained fourteen (14) days post-surgery. At this time, the animals were anesthetized and perfusion fixed in cacodylate buffered 2.5% glutaraldehyde. The proximal tibias were quickly dissected out and split sagittally. One half was used for light microscopy (LM) and the other for electron microscopy (EM). The halves used for EM were cut into blocks approximately 1×3 mm. The tissue blocks were prepared for ultra-thin sectioning and transmission EM. The tissue was oriented so as to section through the epiphyseal growth plate from the zone of proliferating cartilage on down through the hypertrophic zone and into the initial trabecular bone. Sections were studied stained (double heavy metal) and unstained.


2004 ◽  
Vol 171 (4S) ◽  
pp. 496-497
Author(s):  
Edward D. Matsumoto ◽  
George V. Kondraske ◽  
Lucas Jacomides ◽  
Kenneth Ogan ◽  
Margaret S. Pearle ◽  
...  

The main principle of the strategy for the complex improvement of the functioning of northern cities in winter, including their infrastructure development, is a comprehensive solution of the problem of industrial-scale snow-mass collection, removal and utilization at different areas of urban roadway networks. For its implementation in the capital of Russia, “MosvodokanalNIIproject” JSC developed in 2002 the Snow Removal Master Plan for the city of Moscow. The meteorological conditions in the city, which have changed considerably in the recent years, including the changes in the snow-cover depth and in the road-surface areas to be cleaned, as well as emerging of new technologies for the cleaning of urban streets, yards and sidewalks and some new types of deicing agents, resulted in the necessity to update the above-mentioned Snow Removal Master Plan developed for the city of Moscow. Efficient application of deicing agents is of special importance for its updating in the context of the environmental safety of the city in a winter period. The article considers the results of the implementation of the updated Snow Removal Master Plan and contains some proposals concerning snow removal under the conditions of extreme snowfalls.


Sign in / Sign up

Export Citation Format

Share Document