scholarly journals Stress calculation on bevel gears with FEM influence vectors

Author(s):  
Frederik Mieth ◽  
Carsten Ulrich ◽  
Berthold Schlecht

AbstractIn order to be able to carry out an optimal gear design with the aim of cost reduction and the careful handling of resources, load capacity is an important criterion for the evaluation of a gear. For the calculation of the flank and root load capacity, a precise loaded tooth contact analysis (LTCA) is necessary. With LTCA software like BECAL, influence numbers are used to calculate the deformation of the gear. These influence numbers are calculated with a BEM-module and considered for calculating the local root stress. This method simplifies the coupling stiffness in tooth width direction with a decay function and neglects the influence of local differences in tooth stiffness. In this publication, this simplification shall be questioned and evaluated.Therefore, a new method for calculating stress with FEM influence vectors is presented. This method enables the calculation of full stress tensors at any desired location in the gear with the efficiency of the influence number method. Additionally, the influence of local stiffness variations in the gear is taken into account. Various gear examples show the influence of material connections at the pinion root and the influence of the rim thickness of a wheel on the root stress. To validate the accuracy and the time efficiency of the new calculation method and to compare the results to current state-of-the-art simulations, a well-documented series of tests from the literature is recalculated and evaluated.

2011 ◽  
Vol 86 ◽  
pp. 237-242 ◽  
Author(s):  
Bernd Robert Höhn ◽  
Karsten Stahl ◽  
Christian Wirth

At the FZG (Gear Research Centre, Munich, Germany) a research project was carried out to analyze the influence of the hypoid offset on the load capacity of bevel gears by systematic theoretical and experimental investigations. For the experimental investigations two types of bevel gears were designed, one for the pitting tests and one for the tooth root tests. The results of the tooth root tests showed as expected an increasing load capacity with higher offsets. In contrast the pitting tests showed an increasing, but after reaching a maximum, a decreasing load capacity with higher offsets. Regarding the test results a new calculation method was developed that is based on a loaded tooth contact analysis (LTCA). The method is able to consider the local stresses on the flank and in the tooth root. The local strength values are derived out of the standard ISO 6336 for the calculation of helical gears. For bending the local geometry of the tooth root is considered to adopt the strength values of helical gears to bevel and hypoid gears. As a result the local safety factors might be calculated along the face width of pinion and wheel. For pitting the local sliding conditions are taken into account in order to appraise the local lubrication conditions as well as the risk of crack initiations due to shear stresses and higher contact temperatures. The recalculation of the test showed for both types of failure a good correlation between the test results and the calculated values.


2011 ◽  
Vol 86 ◽  
pp. 188-191 ◽  
Author(s):  
Chao Sheng Song ◽  
Cai Chao Zhu ◽  
Teik Chin Lim ◽  
Rong Fan

It is known that tooth bending failures are directly caused by the stress state at the tooth root or fillet regions of the gear teeth. In this study, the geometric and manufacturing of the fillet and root of crossed beveloid are investigated and a computational tooth stress prediction model is setup applying exact geometry-based mesh theory. The dominate fillet and root design parameter and load were examined in the loaded tooth contact analysis to analyze root stresses.


2000 ◽  
Vol 122 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Claude Gosselin ◽  
Thierry Guertin ◽  
Didier Remond ◽  
Yves Jean

The Transmission Error and Bearing Pattern of a gear set are fundamental aspects of its meshing behavior. To assess the validity of gear simulation models, the Transmission Error and Bearing Pattern of a Formate Hypoid gear set are measured under a variety of operating positions and applied loads. Measurement data are compared to simulation results of Tooth Contact Analysis and Loaded Tooth Contact Analysis models, and show excellent agreement for the considered test gear set. [S1050-0472(00)00901-6]


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
Vilmos V. Simon

In this study, an optimization methodology is proposed to systematically define the optimal head-cutter geometry and machine-tool settings to simultaneously minimize the tooth contact pressure and angular displacement error of the driven gear (the transmission error), and to reduce the sensitivity of face-hobbed spiral bevel gears to the misalignments. The proposed optimization procedure relies heavily on the loaded tooth contact analysis for the prediction of tooth contact pressure distribution and transmission errors influenced by the misalignments inherent in the gear pair. The load distribution and transmission error calculation method employed in this study were developed by the author of this paper. The targeted optimization problem is a nonlinear constrained optimization problem, belonging to the framework of nonlinear programming. In addition, the objective function and the constraints are not available analytically, but they are computable, i.e., they exist numerically through the loaded tooth contact analysis. For these reasons, a nonderivative method is selected to solve this particular optimization problem. That is the reason that the core algorithm of the proposed nonlinear programming procedure is based on a direct search method. The Hooke and Jeeves pattern search method is applied. The effectiveness of this optimization was demonstrated on a face-hobbed spiral bevel gear example. Drastic reductions in the maximum tooth contact pressure (62%) and in the transmission errors (70%) were obtained.


1978 ◽  
Author(s):  
Manfred Hirt

Calculation of industrial turbine gears is more than calculation of load capacity concerning Hertzian pressure, bending stress, and scoring phenomena. It also includes, for example, a complete vibration analysis of the gear, shaft, and bearing systems. Some newer methods used in the German practice for these calculations and also for determining exact tooth width corrections and some aspects of the new ISO calculation methods are discussed.


2021 ◽  
Author(s):  
Shunxing Wu ◽  
Hongzhi Yan ◽  
Zhiyong Wang ◽  
Rengui Bi ◽  
Jia Li

Abstract For the hypoid gear pair of the heavy-duty vehicle drive axle machined by the duplex helical method, in order to avoid edge contact and stress concentration on the tooth surface, a four-segment tool profile is designed to modify the concave and convex surfaces simultaneously. First, the geometric model of the four-segment tool profile is established. Second, the mathematical model of the duplex helical method based on the four-segment tool profile is established, and the method of solving the tooth surface generated by the connecting points of the four-segment tool profile is given. Finally, the finite element method of loaded tooth contact analysis is used to analyze the meshing performance of the gear pair obtained by the four-segment tool profile modification, and the results are compared with the original gear pair. The results show that after the tooth surfaces are modified, the edge contact of the tooth surfaces are avoided, the stress distribution of the tooth surfaces are improved, the maximum contact stress of the tooth surfaces are reduced, and the fatigue and wear life of the tooth surface are improved.


Lubricants ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 20 ◽  
Author(s):  
Gajarajan Sivayogan ◽  
Ramin Rahmani ◽  
Homer Rahnejat

Energy efficiency and functional reliability are the two key requirements in the design of high-performance transmissions. Therefore, a representative analysis replicating real operating conditions is essential. This paper presents the thermoelastohydrodynamic lubrication (TEHL) of meshing spur gear teeth of high-performance racing transmission systems, where high generated contact pressures and lubricant shear lead to non-Newtonian traction. The determination of the input contact geometry of meshing pairs as well as contact kinematics are essential steps for representative TEHL. These are incorporated in the current analysis through the use of Lubricated Loaded Tooth Contact Analysis (LLTCA), which is far more realistic than the traditional Tooth Contact Analysis (TCA). In addition, the effects of lubricant and flash surface temperature rise of contacting pairs, leading to the thermal thinning of lubricant, are taken into account using a thermal network model. Furthermore, high-speed contact kinematics lead to shear thinning of the lubricant and reduce the film thickness under non-Newtonian traction. This comprehensive approach based on established TEHL analysis, particularly including the effect of LLTCA on the TEHL of spur gears, has not hitherto been reported in literature.


2020 ◽  
Vol 10 (12) ◽  
pp. 4403
Author(s):  
Bing Yuan ◽  
Geng Liu ◽  
Lan Liu

As one of the long period gear errors, the effects of random cumulative pitch deviations on mesh excitations and vibration responses of a helical geared rotor system (HGRS) are investigated. The long-period mesh stiffness (LPMS), static transmission error (STE), as well as composite mesh error (CMS), and load distributions of helical gears are calculated using an enhanced loaded tooth contact analysis (LTCA) model. A dynamic model with multi degrees of freedom (DOF) is employed to predict the vibration responses of HGRS. Mesh excitations and vibration responses analysis of unmodified HGRS are conducted in consideration of random cumulative pitch deviations. The results indicate that random cumulative pitch deviations have significant effects on mesh excitations and vibration responses of HGRS. The curve shapes of STE and CMS become irregular when the random characteristic of cumulative pitch deviations is considered, and the appearance of partial contact loss in some mesh cycles leads to decreased LPMS when load torque is relatively low. Vibration modulation phenomenon can be observed in dynamic responses of HGRS. In relatively light load conditions, the amplitudes of sideband frequencies become larger than that of mesh frequency and its harmonics (MFIHs) because of relatively high contact ratio. The influences of random cumulative pitch deviations on the vibration responses of modified HGRS are also discussed.


Sign in / Sign up

Export Citation Format

Share Document