End-of-life (EOL) issues and options for electric vehicle batteries

2013 ◽  
Vol 15 (6) ◽  
pp. 881-891 ◽  
Author(s):  
Monsuru Olalekan Ramoni ◽  
Hong-Chao Zhang
Keyword(s):  
Procedia CIRP ◽  
2021 ◽  
Vol 96 ◽  
pp. 260-265
Author(s):  
Ahmet Yükseltürk ◽  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

2019 ◽  
Vol 12 (1) ◽  
pp. 147 ◽  
Author(s):  
Fernando Enzo Kenta Sato ◽  
Toshihiko Nakata

This study aims to propose a model to forecast the volume of critical materials that can be recovered from lithium-ion batteries (LiB) through the recycling of end of life electric vehicles (EV). To achieve an environmentally sustainable society, the wide-scale adoption of EV seems to be necessary. Here, the dependency of the vehicle on its batteries has an essential role. The efficient recycling of LiB to minimize its raw material supply risk but also the economic impact of its production process is going to be essential. Initially, this study forecasted the vehicle fleet, sales, and end of life vehicles based on system dynamics modeling considering data of scrapping rates of vehicles by year of life. Then, the volumes of the critical materials supplied for LiB production and recovered from recycling were identified, considering variations in the size/type of batteries. Finally, current limitations to achieve closed-loop production in Japan were identified. The results indicate that the amount of scrapped electric vehicle batteries (EVB) will increase by 55 times from 2018 to 2050, and that 34% of lithium (Li), 50% of cobalt (Co), 28% of nickel (Ni), and 52% of manganese (Mn) required for the production of new LiB could be supplied by recovered EVB in 2035.


2020 ◽  
Vol 8 ◽  
Author(s):  
Duygu Karabelli ◽  
Steffen Kiemel ◽  
Soumya Singh ◽  
Jan Koller ◽  
Simone Ehrenberger ◽  
...  

The growing number of Electric Vehicles poses a serious challenge at the end-of-life for battery manufacturers and recyclers. Manufacturers need access to strategic or critical materials for the production of a battery system. Recycling of end-of-life electric vehicle batteries may ensure a constant supply of critical materials, thereby closing the material cycle in the context of a circular economy. However, the resource-use per cell and thus its chemistry is constantly changing, due to supply disruption or sharply rising costs of certain raw materials along with higher performance expectations from electric vehicle-batteries. It is vital to further explore the nickel-rich cathodes, as they promise to overcome the resource and cost problems. With this study, we aim to analyze the expected development of dominant cell chemistries of Lithium-Ion Batteries until 2030, followed by an analysis of the raw materials availability. This is accomplished with the help of research studies and additional experts’ survey which defines the scenarios to estimate the battery chemistry evolution and the effect it has on a circular economy. In our results, we will discuss the annual demand for global e-mobility by 2030 and the impact of Nickel-Manganese-Cobalt based cathode chemistries on a sustainable economy. Estimations beyond 2030 are subject to high uncertainty due to the potential market penetration of innovative technologies that are currently under research (e.g. solid-state Lithium-Ion and/or sodium-based batteries).


2019 ◽  
Vol 10 (4) ◽  
pp. 63 ◽  
Author(s):  
Casals ◽  
Rodríguez ◽  
Corchero ◽  
Carrillo

As a result of monitoring thousands of electric vehicle charges around Europe, this study builds statistical distributions that model the amount of energy necessary for trips between charges, showing that most of trips are within the range of electric vehicle even when the battery degradation reaches the end-of-life, commonly accepted to be 80% State of Health. According to these results, this study analyses how far this End-of-Life can be pushed forward using statistical methods and indicating the provability of failing to fulfill the electric vehicle (EV) owners’ daily trip needs.


2017 ◽  
Vol 10 (2) ◽  
pp. 266 ◽  
Author(s):  
Lluc Canals Casals ◽  
Beatriz Amante García ◽  
Lázaro V. Cremades

Purpose: On pursue of economic revenue, the second life of electric vehicle batteries is closer to reality. Common electric vehicles reach the end of life when batteries loss between a 20 or 30% of its capacity. However, battery technology is evolving fast and the next generation of electric vehicles will have between 300 and 400 km range. This study will analyze different End of Life scenarios according to battery capacity and their possible second life’s opportunities. Additionally, an analysis of the electric vehicle market will define possible locations for battery repurposing or remanufacturing plants.Design/methodology/approach: Calculating the barycenter of the electric vehicle market offers an optimal location to settle the battery repurposing plant from a logistic and environmental perspective.This paper presents several possible applications and remanufacture processes of EV batteries according to the state of health after their collection, analyzing both the direct reuse of the battery and the module dismantling strategy.Findings: The study presents that Netherlands is the best location for installing a battery repurposing plant because of its closeness to EV manufacturers and the potential European EV markets, observing a strong relation between the EV market share and the income per capita.15% of the batteries may be send back to the an EV as a reposition battery, 60% will be prepared for stationary or high capacity installations such as grid services, residential use, Hybrid trucks or electric boats, and finally, the remaining 25% is to be dismantled into modules or cells for smaller applications, such as bicycles or assisting robots.Originality/value: Most of studies related to the EV battery reuse take for granted that they will all have an 80% of its capacity. This study analyzes and proposes a distribution of battery reception and presents different 2nd life alternatives according to their state of health.


Sign in / Sign up

Export Citation Format

Share Document