Genetic Transformation System for a Psychrotrophic Deep-sea Bacterium: Isolation and Characterization of a Psychrotrophic Plasmid

2001 ◽  
Vol 3 (2) ◽  
pp. 96-99 ◽  
Author(s):  
Yasurou Kurusu ◽  
Satoshi Yoshimura ◽  
Mitsuko Tanaka ◽  
Takamichi Nakamura ◽  
Akihiko Maruyama ◽  
...  
2021 ◽  
Vol 7 (2) ◽  
pp. 138
Author(s):  
Min Liang ◽  
Wei Li ◽  
Landa Qi ◽  
Guocan Chen ◽  
Lei Cai ◽  
...  

Fungi from unique environments exhibit special physiological characters and plenty of bioactive natural products. However, the recalcitrant genetics or poor transformation efficiencies prevent scientists from systematically studying molecular biological mechanisms and exploiting their metabolites. In this study, we targeted a guanophilic fungus Amphichorda guana LC5815 and developed a genetic transformation system. We firstly established an efficient protoplast preparing method by conditional optimization of sporulation and protoplast regeneration. The regeneration rate of the protoplast is up to about 34.6% with 0.8 M sucrose as the osmotic pressure stabilizer. To develop the genetic transformation, we used the polyethylene glycol-mediated protoplast transformation, and the testing gene AG04914 encoding a major facilitator superfamily transporter was deleted in strain LC5815, which proves the feasibility of this genetic manipulation system. Furthermore, a uridine/uracil auxotrophic strain was created by using a positive screening protocol with 5-fluoroorotic acid as a selective reagent. Finally, the genetic transformation system was successfully established in the guanophilic fungus strain LC5815, which lays the foundation for the molecular genetics research and will facilitate the exploitation of bioactive secondary metabolites in fungi.


2021 ◽  
Vol 289 ◽  
pp. 110429
Author(s):  
Xinhui Wang ◽  
Fengli Zhou ◽  
Jianlong Liu ◽  
Wenqian Liu ◽  
Shaoling Zhang ◽  
...  

2012 ◽  
Vol 78 (9) ◽  
pp. 3488-3491 ◽  
Author(s):  
Jinman Liu ◽  
Zhoujie Xie ◽  
Justin Merritt ◽  
Fengxia Qi

ABSTRACTWe have constructed the firstEscherichia coli-Veillonellashuttle vector based on an endogenous plasmid (pVJL1) isolated from a clinicalVeillonellastrain. A highly transformableVeillonellastrain was also identified. Both the shuttle vector and the transformable strain should be valuable tools for futureVeillonellagenetic studies.


2019 ◽  
Vol 10 ◽  
Author(s):  
Sudipta Shekhar Das Bhowmik ◽  
Alam Yen Cheng ◽  
Hao Long ◽  
Grace Zi Hao Tan ◽  
Thi My Linh Hoang ◽  
...  

1992 ◽  
Vol 56 (2) ◽  
pp. 228-232 ◽  
Author(s):  
Akihiro Hino ◽  
Chakamas Wongkhalaung ◽  
Shinya Kawai ◽  
Satoru Murao ◽  
Keiji Yano ◽  
...  

2003 ◽  
Vol 69 (5) ◽  
pp. 2906-2913 ◽  
Author(s):  
K. J. Edwards ◽  
D. R. Rogers ◽  
C. O. Wirsen ◽  
T. M. McCollom

ABSTRACT We report the isolation and physiological characterization of novel, psychrophilic, iron-oxidizing bacteria (FeOB) from low-temperature weathering habitats in the vicinity of the Juan de Fuca deep-sea hydrothermal area. The FeOB were cultured from the surfaces of weathered rock and metalliferous sediments. They are capable of growth on a variety of natural and synthetic solid rock and mineral substrates, such as pyrite (FeS2), basalt glass (∼10 wt% FeO), and siderite (FeCO3), as their sole energy source, as well as numerous aqueous Fe substrates. Growth temperature characteristics correspond to the in situ environmental conditions of sample origin; the FeOB grow optimally at 3 to 10°C and at generation times ranging from 57 to 74 h. They are obligate chemolithoautotrophs and grow optimally under microaerobic conditions in the presence of an oxygen gradient or anaerobically in the presence of nitrate. None of the strains are capable of using any organic or alternate inorganic substrates tested. The bacteria are phylogenetically diverse and have no close Fe-oxidizing or autotrophic relatives represented in pure culture. One group of isolates are γ-Proteobacteria most closely related to the heterotrophic bacterium Marinobacter aquaeolei (87 to 94% sequence similarity). A second group of isolates are α-Proteobacteria most closely related to the deep-sea heterotrophic bacterium Hyphomonas jannaschiana (81 to 89% sequence similarity). This study provides further evidence for the evolutionarily widespread capacity for Fe oxidation among bacteria and suggests that FeOB may play an unrecognized geomicrobiological role in rock weathering in the deep sea.


Sign in / Sign up

Export Citation Format

Share Document