Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations

Author(s):  
Wenhua Xiang ◽  
Linhua Li ◽  
Shuai Ouyang ◽  
Wenfa Xiao ◽  
Lixiong Zeng ◽  
...  
Geoderma ◽  
2017 ◽  
Vol 306 ◽  
pp. 127-134 ◽  
Author(s):  
Selvalakshmi Selvaraj ◽  
Vasu Duraisamy ◽  
Zhijun Huang ◽  
Futao Guo ◽  
Xiangqing Ma

2016 ◽  
Author(s):  
Mei Guangyi ◽  
Sun Yujun

Large uncertainties still remain when using existing biomass equations to estimate total tree and forest stand scale. In this paper, we develop individual-tree biomass models for Chinese fir (Cunninghamia lanceolata (Lamb.)Hook.) stands in Fujian Province, southeast of China. For this, we used 74 previously established models that are most commonly used to estimate tree biomass, and selected the best fit models and modified it. The results showed the published model with ln(B) (biomass), ln(D) (diameter at breast height), (ln(H)) 2, (total height) (ln(H))3 and ln(WD) (wood density) to be the best fitting model for estimating the tree biomass of Chinese fir. Furthermore, we observed that variables D, H (height), WD significantly correlated with the total tree biomass estimation model, as a result of it portraying the natural logarithm structure to be the best tree biomass structure. Finally, when a multi-step improvement on tree biomass model was performed, the analytic model with TV (tree volume), WD and BECF (biomass wood density conversion factor), achieved the highest accuracy simulation. Therefore, when combined with TV, WD and BECF to tree biomass volume coefficient bi for Chinese fir, the optimal model is the forest stand biomass (SB) estimation model, model with variables of stand volume (SV) and coefficient bi.


2016 ◽  
Author(s):  
Mei Guangyi ◽  
Sun Yujun

Large uncertainties still remain when using existing biomass equations to estimate total tree and forest stand scale. In this paper, we develop individual-tree biomass models for Chinese fir (Cunninghamia lanceolata (Lamb.)Hook.) stands in Fujian Province, southeast of China. For this, we used 74 previously established models that are most commonly used to estimate tree biomass, and selected the best fit models and modified it. The results showed the published model with ln(B) (biomass), ln(D) (diameter at breast height), (ln(H)) 2, (total height) (ln(H))3 and ln(WD) (wood density) to be the best fitting model for estimating the tree biomass of Chinese fir. Furthermore, we observed that variables D, H (height), WD significantly correlated with the total tree biomass estimation model, as a result of it portraying the natural logarithm structure to be the best tree biomass structure. Finally, when a multi-step improvement on tree biomass model was performed, the analytic model with TV (tree volume), WD and BECF (biomass wood density conversion factor), achieved the highest accuracy simulation. Therefore, when combined with TV, WD and BECF to tree biomass volume coefficient bi for Chinese fir, the optimal model is the forest stand biomass (SB) estimation model, model with variables of stand volume (SV) and coefficient bi.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kun Sun ◽  
Honggang Sun ◽  
Zonghao Qiu ◽  
Qiang Liu

Host-plant-associated bacteria affect the growth, vigor, and nutrient availability of the host plant. However, phyllosphere bacteria have received less research attention and their functions remain elusive, especially in forest ecosystems. In this study, we collected newly developed needles from sapling (age 5 years), juvenile (15 years), mature (25 years), and overmature (35 years) stands of Chinese fir [Cunninghamia lanceolata (Lamb.) Hook]. We analyzed changes in phyllosphere bacterial communities, their functional genes, and metabolic activity among different stand ages. The results showed that phyllosphere bacterial communities changed, both in relative abundance and in composition, with an increase in stand age. Community abundance predominantly changed in the orders Campylobacterales, Pseudonocardiales, Deinococcales, Gemmatimonadales, Betaproteobacteriales, Chthoniobacterales, and Propionibacteriales. Functional predictions indicated the genes of microbial communities for carbon metabolism, nitrogen metabolism, antibiotic biosynthesis, flavonoids biosynthesis, and steroid hormone biosynthesis varied; some bacteria were strongly correlated with some metabolites. A total of 112 differential metabolites, including lipids, benzenoids, and flavonoids, were identified. Trigonelline, proline, leucine, and phenylalanine concentrations increased with stand age. Flavonoids concentrations were higher in sapling stands than in other stands, but the transcript levels of genes associated with flavonoids biosynthesis in the newly developed needles of saplings were lower than those of other stands. The nutritional requirements and competition between individual trees at different growth stages shaped the phyllosphere bacterial community and host–bacteria interaction. Gene expression related to the secondary metabolism of shikimate, mevalonate, terpenoids, tocopherol, phenylpropanoids, phenols, alkaloids, carotenoids, betains, wax, and flavonoids pathways were clearly different in Chinese fir at different ages. This study provides an overview of phyllosphere bacteria, metabolism, and transcriptome in Chinese fir of different stand ages and highlights the value of an integrated approach to understand the molecular mechanisms associated with biosynthesis.


Trees ◽  
2021 ◽  
Author(s):  
Guijun Liu ◽  
Xian Xue ◽  
Jinling Feng ◽  
Dechang Cao ◽  
Jinxing Lin ◽  
...  

2014 ◽  
Vol 44 (6) ◽  
pp. 582-592 ◽  
Author(s):  
Liming Bian ◽  
Jisen Shi ◽  
Renhua Zheng ◽  
Jinhui Chen ◽  
Harry X. Wu

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is the most commercially important conifer in China, and the Nanjing Forestry University – Fujian Province Chinese fir Cooperation (NJFU – Fujian Cooperation) breeding program has advanced it into the third cycle of selection and breeding. In this paper, we estimated genetic parameters from four sites for 80 half-sib families and summarized previous estimates of genetic parameters in Chinese fir with an objective to propose optimal breeding strategy. Heritability averaged 0.20 and 0.14 for height and diameter at breast height (DBH), respectively, for the four sites. A significant genotype–environment interaction (G × E) for growth was also observed among the four sites, with the greatest interactions between a marginal site and the three central sites in the Fujian Province Chinese fir plantation region. The average estimated type-B genetic correlation between the marginal site and the three central sites was 0.08 for height and –0.09 for DBH. However, the highly productive families were among the most stable across the four sites. The results from this study in combination with summarized genetic parameters from literature were used to discuss and propose an optimal breeding strategy for the third generation of the breeding program for Chinese firs in Fujian Province.


Sign in / Sign up

Export Citation Format

Share Document