Spatiotemporal regulation of galectin-1-induced T-cell death in lamina propria from Crohn’s disease and ulcerative colitis patients

APOPTOSIS ◽  
2021 ◽  
Author(s):  
Rodrigo Papa-Gobbi ◽  
Cecilia I. Muglia ◽  
Andrés Rocca ◽  
Renata Curciarello ◽  
Alicia M. Sambuelli ◽  
...  
Author(s):  
Flavia Merigo ◽  
Alessandro Brandolese ◽  
Sonia Facchin ◽  
Federico Boschi ◽  
Marzia Di Chio ◽  
...  

Abstract The expression of leptin and leptin receptor (Ob-R) has been partially elucidated in colon of patients with inflammatory bowel diseases (IBDs), even though leptin is involved in angiogenesis and inflammation. We previously reported overexpression of GLUT5 fructose transporter, in aberrant clusters of lymphatic vessels in lamina propria of IBD and controls. Here, we examine leptin and Ob-R expression in the same biopsies. Specimens were obtained from patients with ulcerative colitis (UC), Crohn’s disease (CD) and controls who underwent screening for colorectal cancer, follow-up after polypectomy or with a history of lower gastrointestinal symptoms. Immunohistochemistry revealed leptin in apical and basolateral membranes of short epithelial portions, Ob-R on the apical pole of epithelial cells. Leptin and Ob-R were also identified in structures and cells scattered in the lamina propria. In UC, a significant correlation between leptin and Ob-R in the lamina propria was found in all inflamed samples, beyond non-inflamed samples of the proximal tract, while in CD, it was found in inflamed distal samples. Most of the leptin and Ob-R positive areas in the lamina propria were also GLUT5 immunoreactive in inflamed and non-inflamed mucosa. A significant correlation of leptin or Ob-R expression with GLUT5 was observed in the inflamed distal samples from UC. Our findings suggest that there are different sites of leptin and Ob-R expression in large intestine and those in lamina propria do not reflect the status of mucosal inflammation. The co-localization of leptin and/or Ob-R with GLUT5 may indicate concomitance effects in colorectal lamina propria areas.


2003 ◽  
Vol 284 (4) ◽  
pp. G595-G603 ◽  
Author(s):  
T. Totsuka ◽  
T. Kanai ◽  
K. Uraushihara ◽  
R. Iiyama ◽  
M. Yamazaki ◽  
...  

Interaction of OX40 (CD134) on T cells with its ligand (OX40L) on antigen-presenting cells has been implicated in pathogenic T cell activation. This study was performed to explore the involvement of OX40/OX40L in the development of T cell-mediated chronic colitis. We evaluated both the preventive and therapeutic effects of neutralizing anti-OX40L MAb on the development of chronic colitis in SCID mice induced by adoptive transfer of CD4+CD45RBhighT cells as an animal model of Crohn's disease. We also assessed the combination of anti-OX40L and anti-TNF-α MAbs to improve the therapeutic effect. Administration of anti-OX40L MAb markedly ameliorated the clinical and histopathological disease in preventive and therapeutic protocols. In vivo treatment with anti-OX40L MAb decreased CD4+T cell infiltration in the colon and suppressed IFN-γ, IL-2, and TNF-α production by lamina propria CD4+T cells. The combination with anti-TNF-α MAb further improved the therapeutic effect by abolishing IFN-γ, IL-2, and TNF-α production by lamina propria CD4+T cells. Our present results suggested a pivotal role of OX40/OX40L in the pathogenesis of T cell-mediated chronic colitis. The OX40L blockade, especially in combination with the TNF-α blockade, may be a promising strategy for therapeutic intervention of Crohn's disease.


2017 ◽  
Vol 62 (9) ◽  
pp. 2357-2368 ◽  
Author(s):  
Ji Li ◽  
Aito Ueno ◽  
Marietta Iacucci ◽  
Miriam Fort Gasia ◽  
Humberto B. Jijon ◽  
...  

2020 ◽  
Vol 14 (11) ◽  
pp. 1619-1631 ◽  
Author(s):  
Huashan Liu ◽  
Zhenxing Liang ◽  
Fengwei Wang ◽  
Xiaobin Zheng ◽  
Ziwei Zeng ◽  
...  

Abstract Background and aims Sustained activation of CD4+ T cells plays important roles in the pathogenesis of Crohn’s disease [CD]. Under physiologic conditions, activated T cells can be timely eliminated by a process termed activation-induced cell death [AICD], restraining T cell over-activation and preventing immunological destruction. We inquired whether defective AICD might explain CD4+ T cell over-activation in CD and investigated the underlying mechanisms. Methods CD14+ macrophages [Mφ] and CD4+ T cells were isolated from intestinal tissues or peripheral blood of controls and CD patients. An ex vivo evaluation system was employed to simulate AICD and cell apoptosis was measured by flow cytometry. Results CD4+ T cells from CD patients fail to undergo AICD in the ex vivo system. Specifically, proinflammatory type 1 helper T [Th1] and type 17 helper T [Th17] cells, rather than immunosuppressive regulatory T [Treg] cells evade AICD in CD. CD14+ Mφ in the intestinal inflammatory microenvironment of CD promote AICD resistance in CD4+ T cells via a cell-to-cell contact-independent manner. Mechanistically, CD14+ Mφ released exosomes express membrane tumour necrosis factor [TNF] which engages TNFR2 on CD4+ T cells and triggers NF-κB signalling, thereby causing AICD resistance. Importantly, clinically applicable anti-TNF antibodies effectively blocked exosomal membrane TNF-induced CD4+ T cell AICD resistance. Conclusions CD14+ Mφ participate in CD pathogenesis by inducing AICD resistance through release of exosomal membrane TNF to activate the TNFR2/NF-κB pathway in CD4+ T cells. These results present new insights into CD pathogenesis and extend mechanistic understanding of anti-TNF agents. Proposed model CD14+ Mφ in the intestinal microenvironment of CD patients maintain the sustained activation of CD4+ T cells through exosomal membrane TNF to induce apoptosis resistance via TNFR2/NF-κB signalling, which could be effectively blocked by clinically applicable anti-TNF agents.


2011 ◽  
Vol 301 (6) ◽  
pp. G1083-G1092 ◽  
Author(s):  
Saskia Thomas ◽  
Diana Metzke ◽  
Jürgen Schmitz ◽  
Yvonne Dörffel ◽  
Daniel C. Baumgart

Saccharomyces boulardii ( Sb) is a probiotic yeast that has demonstrated efficacy in pilot studies in patients with inflammatory bowel disease (IBD). Microbial antigen handling by dendritic cells (DC) is believed to be of critical importance for immunity and tolerance in IBD. The aim was to characterize the effects of Sb on DC from IBD patients. Highly purified (>95%), lipopolysaccharide-stimulated CD1c+CD11c+CD123−myeloid DC (mDC) from patients with ulcerative colitis (UC; n = 36), Crohn's disease (CD; n = 26), or infectious controls (IC; n = 4) were cultured in the presence or absence of fungal supernatant from Sb ( SbS). Phenotype and cytokine production and/or secretion of IBD mDC were measured by flow cytometry and cytometric bead arrays, respectively. T cell phenotype and proliferation were assessed in a mixed lymphocyte reaction (MLR) with allogenic CD4+CD45RA+naïve T cells from healthy donors. Mucosal healing was investigated in epithelial wounding and migration assays with IEC-6 cells. SbS significantly decreased the frequency of CD40-, CD80-, and CD197 (CCR7; chemokine receptor-7)-expressing IBD mDC and reduced their secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-6 while increasing IL-8. In the MLR, SbS significantly inhibited T cell proliferation induced by IBD mDC. Moreover, SbS inhibited TH1 (TNF-α and interferon-γ) polarization induced by UC mDC and promoted IL-8 and transforming growth factor-β-dependent mucosal healing. In summary, we provide novel evidence of synergistic mechanisms how Sb controls inflammation (inhibition of T cell costimulation and inflammation-associated migration and mobilization of DC) and promotes epithelial restitution relevant in IBD.


Sign in / Sign up

Export Citation Format

Share Document