scholarly journals Multi-taxa spatial conservation planning reveals similar priorities between taxa and improved protected area representation with climate change

Author(s):  
Rob Critchlow ◽  
Charles A. Cunningham ◽  
Humphrey Q. P. Crick ◽  
Nicholas A. Macgregor ◽  
Michael D. Morecroft ◽  
...  

AbstractProtected area (PA) networks have in the past been constructed to include all major habitats, but have often been developed through consideration of only a few indicator taxa or across restricted areas, and rarely account for global climate change. Systematic conservation planning (SCP) aims to improve the efficiency of biodiversity conservation, particularly when addressing internationally agreed protection targets. We apply SCP in Great Britain (GB) using the widest taxonomic coverage to date (4,447 species), compare spatial prioritisation results across 18 taxa and use projected future (2080) distributions to assess the potential impact of climate change on PA network effectiveness. Priority conservation areas were similar among multiple taxa, despite considerable differences in spatial species richness patterns; thus systematic prioritisations based on indicator taxa for which data are widely available are still useful for conservation planning. We found that increasing the number of protected hectads by 2% (to reach the 2020 17% Aichi target) could have a disproportionate positive effect on species protected, with an increase of up to 17% for some taxa. The PA network in GB currently under-represents priority species but, if the potential future distributions under climate change are realised, the proportion of species distributions protected by the current PA network may increase, because many PAs are in northern and higher altitude areas. Optimal locations for new PAs are particularly concentrated in southern and upland areas of GB. This application of SCP shows how a small addition to an existing PA network could have disproportionate benefits for species conservation.

2015 ◽  
Vol 5 (2) ◽  
pp. 63-76
Author(s):  
HADIANA HADIANA ◽  
AGUSTINUS M. SAMOSIR

Hadiana, Samosir AM. 2015. The design of mangrove conservation area to increase resilience of Cimanuk Delta, Indramayu, West Java to climate change. Bonorowo Wetlands 5: 63-76. Indramayu is one of coastal area in North Java many encountered caused impact by climate change, this seemed from storm intensity, abrasion and flood that happened more frequent. One of the management effort to reduce these impacts is the conservation. Conservation planning integrated into one form designation of conservation areas. This research aim was to determine the variable of coastal resources that are related to protection and gave the alternative plan of conservation area as an effort to brought back Cimanuk Delta condition toward climate change. The plan in scenario one generated core zone about 97,27 km2, limited utilization zone 75,35 km², sustainable fisheries zone 149,30 km², and others zone 116,07 km² of total aquatic study in Coastal of Indramayu (Delta Cimanuk) that have a total area about 437,9890 km². The plan in scenario two generated core zone about 102,07 km², and the plan in scenario three generated core zone about 120,45 km. Overall, the location that always selected as a conservation area located around Cemara, Pabean Ilir, Cantigi and Pagirikan Coastal area.


Author(s):  
T. S. Kemp

The world’s reptile fauna is facing the threat of a considerable reduction in the number of species. One estimate is that by 2050 over 500 species, around 5 per cent, will have been lost. By 2080, the figure will have grown to 20 per cent, which is approximately 2,000 species. ‘The future of the world’s reptiles’ explains that the threats to reptiles are: commercial exploitation for food, medicines, and ornament; habitat destruction; global climate change; and pollution. Any comprehensive effort to conserve needs to address all of these. By far the most important way to conserve reptiles is setting up and regulating various kinds of protected area. Another important approach is legislation to control trade in reptiles.


Author(s):  
Alan Grainger

Conservation planning for climate change adaptation is only one in a long sequence of conservation paradigms. To identify priority locations for protected areas it must compete with three other contemporary paradigms: conservation of ecosystem services, optimizing conservation of ecosystem services and poverty alleviation, and reducing carbon emissions from deforestation and forest degradation. This chapter shows how conservation paradigms evolved, discusses the merits of different approaches to modelling potential impacts of climate change on biodiversity, and describes the hybrid BIOCLIMA model and its application to Amazonia. It then discusses conservation planning applications of the three other contemporary paradigms, illustrated by examples from Amazonia and Kenya. It finds that rapid paradigm evolution is not a handicap if earlier paradigms can be nested within later ones. But more sophisticated planning tools are needed to identify optimal locations of protected areas when climate is changing, and to use protection to mitigate climate change. These should encompass the complex interactions between biodiversity, hydrological services, carbon cycling services, climate change, and human systems.


2021 ◽  
Vol 43 (1) ◽  
pp. 19-24
Author(s):  
Anil Kumar Bhardwaj ◽  
◽  
Aditi Bhardwaj ◽  

In India, the development process from Protected Area management to landscape level conservation planning has traversed through several species conservation initiatives and pilot projects. However, the latter approach faces enormous challenges. In this paper we review the existing management practices in the country that deal with landscape approach to conservation, identify bottlenecks and suggest way forward, particularly relevant to forestry and wildlife sectors. Highlighting the major areas of research and action, this paper advocates the urgent need to build on the experiences from the sites, which have developed some foundation for such initiatives through earlier projects.


2019 ◽  
Vol 11 (5) ◽  
pp. 1393 ◽  
Author(s):  
Yu-Pin Lin ◽  
Chi-Ju Chen ◽  
Wan-Yu Lien ◽  
Wen-Hao Chang ◽  
Joy Petway ◽  
...  

Sustainable conservation aims to ensure the sustained conservation of landscape multi-functionality which in turn requires ensuring ecosystem service (ES) and habitat quality (HQ) sustainability with inclusive landscape-scale conservation planning. This study proposes a landscape conservation planning (LCP) framework for landscape-scale ES-HQ conservation and sustainability. Spatially explicit hotspots for five ESs and HQs are identified via InVEST and LISA software. Spatiotemporal changes in ES-HQ hotspots, in terms of stability and resilience, are delineated. The Zonation technique is applied to prioritize areas for conservation based on ES-HQ hotspot stability and resilience maps. High priority conservation areas are identified and are used as reserve area inputs for land use modeling with CLUE-S software to simulate future land use change under climate change scenarios. This study reports that varied rainfall and climate are major driving factors of ES-HQ sustainability disturbance in the study area. Furthermore, our proposed conservation Strategy 2 demonstrates that a larger extent of landscape multi-functionality can be sustained when the existing conservation area includes the total area of identified ES-HQ resilient hotspots. This study effectively identifies the stability and resiliency of ES-HQ hotspot areas affected by disturbances for high priority landscape conservation requirements to ensure ES-HQ sustainability and landscape multi-functionality in the study area.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243425
Author(s):  
Yafeng Lu ◽  
Pei Xu ◽  
Qinwen Li ◽  
Yukuan Wang ◽  
Cheng Wu

Identifying priority conservation areas plays a significant role in conserving biodiversity under climate change, but uncertainties create challenges for conservation planning. To reduce uncertainties in the conservation planning framework, we developed an adaptation index to assess the effect of topographic complexity on species adaptation to climate change, which was incorporated into the conservation framework as conservation costs. Meanwhile, the species distributions were predicted by the Maxent model, and the priority conservation areas were optimized during different periods in Sichuan province by the Marxan model. Our results showed that the effect of topographic complexity was critical for species adaptation, but the adaptation index decreased with the temperature increase. Based on the conservation targets and costs, the distributions of priority conservation areas were mainly concentrated in mountainous areas around the Sichuan Basin where may be robust to the adaptation to climate change. In the future, the distributions of priority conservation areas had no evident changes, accounting for about 26% and 28% of the study areas. Moreover, most species habitats could be conserved in terms of conservation targets in these priority conservation areas. Therefore, our approach could achieve biodiversity conservation goals and be highly practical. More importantly, quantifying the effect of topography also is critical for options for planning conservation areas in response to climate change.


2018 ◽  
Author(s):  
Arieanna C Balbar ◽  
Anna Metaxas

Marine protected areas (MPAs) are an area-based conservation strategy commonly used to safeguard marine biodiversity and ecosystem services. Population connectivity governs the exchange of individuals among spatially fragmented habitats and is an essential criterion in the design of MPAs. However, detailed computational methods for connectivity are inconsistently applied in management decisions. We reviewed the scientific and management literature to explore the use of connectivity in MPAs located in countries with advanced marine spatial planning. Only 7.8% of 739 MPAs considered connectivity as an ecological criterion, although it has been increasingly used since 2007, suggesting progress in spatial conservation planning towards the use of ecological conservation objectives. In most cases, connectivity was measured implicitly using either rules of thumb or size and spacing guidelines. Of the MPAs that considered connectivity, 67% were for state marine conservation areas or reserves in California and commonwealth marine reserves in Australia. This pattern indicates substantial geographic biases and significant differences in conservation planning and prioritization among countries. We suggest that the incorporation of connectivity in conservation planning needs to become more accessible to practitioners. Prioritizing connectivity as an ecologically important criterion in MPA design will more adequately address metapopulation persistence and recovery.


Sign in / Sign up

Export Citation Format

Share Document