scholarly journals Contribution of invasive bivalves (Dreissena spp.) to element distribution: phase interaction, regional and seasonal comparison in a large shallow lake

2022 ◽  
Author(s):  
Csilla Balogh ◽  
Jarosław Kobak ◽  
Zsófia Kovács ◽  
József Serfőző ◽  
Nóra Faragó ◽  
...  

AbstractAfter introduction, the invasive bivalve dreissenids became key species in the biota of Lake Balaton, the largest shallow lake in Central Europe. The contribution of dreissenid soft tissue and shell, as biotic phases, in element distribution and its interaction with the water and upper sediment phases were examined in two basins with different trophic conditions in spring and autumn. Six metals (Ba, Cu, Fe, Mn, Pb, Zn) were detected in all investigated phases. In general, metals were abundant in the water and soft tissue in the eastern basin in spring, and in the sediment and shells in the western basin in autumn. This might be associated with the more urbanized surroundings in the eastern, and the enhanced organic matter production in the western basin. High relative shares of Ba, Cu, Mn, and Pb were associated with the water and shell samples, whereas high shares of Fe and Zn were noted in the soft mussel tissue and sediments. Results suggest that dynamics of metal uptake by dreissenids depend on the seasonal change in metabolic activity. Shell metal content is less changeable; shells might absorb metals from both the soft tissue and water phases. Metallothionein peptides, the scavengers of intracellular metals, were determined to be biomarkers of the bulk contaminants rather than only metals. The present study shows that invasive bivalves, with high abundance, filtering activity, and storing capacity can significantly contribute to element distribution in the shoreline of a shallow lake ecosystem.

2006 ◽  
Vol 29 (4) ◽  
pp. 2051-2055 ◽  
Author(s):  
G. Kiss ◽  
Gy. Dévai ◽  
B. Tóthmérész ◽  
A. Szabó

2021 ◽  
Author(s):  
Michael W. Thayne ◽  
Benjamin M. Kraemer ◽  
Jorrit P. Mesman ◽  
Bastiaan W. Ibelings ◽  
Rita Adrian

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Bo Wang ◽  
Qianqian Qi

In the shallow lake ecosystems, the recovery of the aquatic macrophytes and the increase in the water transparency have been the main contents of the ecological restoration. Using the shallow lake ecological degradation and restoration model, CNOP method is adopted to discuss the instability and sensitivity of the ecosystem to the finite-amplitude perturbations related to the initial condition and the parameter condition. Results show that the linearly stable clear (turbid) water states can be nonlinearly unstable with the finite-amplitude perturbations, which represent the nature factors and the human activities such as the excessive harvest of the macrophytes and the sediment resuspension caused by artificially dynamic actions on the ecosystems. The results also support the viewpoint of Scheffer et al., whose emphasis is that the facilitation interactions between the submerged macrophytes and the water transparency are the main trigger for an occasional shift from a turbid to a clear state. Also, by the comparison with CNOP-I, CNOP-P, CNOP, and (CNOP-I, CNOP-P), results demonstrate that CNOP, which is not a simple combination of CNOP-I and CNOP-P, could induce the shallow lake ecosystem larger departure from the same ground state rather than CNOP-I, CNOP-P, and (CNOP-I, CNOP-P).


2016 ◽  
Vol 13 (10) ◽  
pp. 3051-3070 ◽  
Author(s):  
Daniela Franz ◽  
Franziska Koebsch ◽  
Eric Larmanou ◽  
Jürgen Augustin ◽  
Torsten Sachs

Abstract. Drained peatlands often act as carbon dioxide (CO2) hotspots. Raising the groundwater table is expected to reduce their CO2 contribution to the atmosphere and revitalise their function as carbon (C) sink in the long term. Without strict water management rewetting often results in partial flooding and the formation of spatially heterogeneous, nutrient-rich shallow lakes. Uncertainties remain as to when the intended effect of rewetting is achieved, as this specific ecosystem type has hardly been investigated in terms of greenhouse gas (GHG) exchange. In most cases of rewetting, methane (CH4) emissions increase under anoxic conditions due to a higher water table and in terms of global warming potential (GWP) outperform the shift towards CO2 uptake, at least in the short term.Based on eddy covariance measurements we studied the ecosystem–atmosphere exchange of CH4 and CO2 at a shallow lake situated on a former fen grassland in northeastern Germany. The lake evolved shortly after flooding, 9 years previous to our investigation period. The ecosystem consists of two main surface types: open water (inhabited by submerged and floating vegetation) and emergent vegetation (particularly including the eulittoral zone of the lake, dominated by Typha latifolia). To determine the individual contribution of the two main surface types to the net CO2 and CH4 exchange of the whole lake ecosystem, we combined footprint analysis with CH4 modelling and net ecosystem exchange partitioning.The CH4 and CO2 dynamics were strikingly different between open water and emergent vegetation. Net CH4 emissions from the open water area were around 4-fold higher than from emergent vegetation stands, accounting for 53 and 13 g CH4 m−2 a−1 respectively. In addition, both surface types were net CO2 sources with 158 and 750 g CO2 m−2 a−1 respectively. Unusual meteorological conditions in terms of a warm and dry summer and a mild winter might have facilitated high respiration rates. In sum, even after 9 years of rewetting the lake ecosystem exhibited a considerable C loss and global warming impact, the latter mainly driven by high CH4 emissions. We assume the eutrophic conditions in combination with permanent high inundation as major reasons for the unfavourable GHG balance.


Author(s):  
András Specziár ◽  
Tibor Erős

A fish-based index is proposed to indicate the ecological status of Lake Balaton, Hungary in accordance with the standard of the European Water Framework Directive (WFD). The Balaton fish index (BFI) synthetises information of 13 lake-specific fish metrics including gillnetting and electric fishing data of species richness of native assemblages, relative abundance, biomass and age structure of native key species, representation of non-native species and general health status. The main anthropogenic pressures considered were the degradation of littoral habitats, invasion of non-native fish species, eutrophication and fishing/angling including stocking. Ecological quality ratio (EQR) is assessed by relating actual fish assemblage metrics to the supposed undisturbed reference status of Lake Balaton reconstructed by expert judgement based on recent and historic information on the fish fauna and its changes. Values of BFI were consistent and indicated good ecological status of Lake Balaton in the period of 2005–2018. This study provides an example on how an EQR assessment methodology might be established in unique habitats with no possibilities for statistical evaluation of pressure-respond relationships and exact determination of the reference status.


Sign in / Sign up

Export Citation Format

Share Document