Effect of Preparation Method of Co9Fe3Bi1Mo12O51 on the Catalytic Performance in the Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene—Comparison Between Co-Precipitation Method and Citric Acid-Derived Sol–Gel Method

2008 ◽  
Vol 128 (1-2) ◽  
pp. 243-247 ◽  
Author(s):  
Ji Chul Jung ◽  
Howon Lee ◽  
In Kyu Song
2015 ◽  
Vol 1088 ◽  
pp. 371-376 ◽  
Author(s):  
Xia Zhang ◽  
Cui Xia Yan ◽  
Rong Feng Guan

Spherical YAG:Ce3+phosphors were synthesized by three different routes namely sol-gel method, co-precipitation method and solvethermal method. The microstructure, crystallization and luminescent properties of the phosphors were studied in order to find the best processing parameter for spherical shape and good luminescence properties of YAG:Ce3+phosphor. Adding citric acid to the precursor solution resulted in the formation of spherical particles in sol-gel method. YAG:Ce3+phosphor made by co-precipitation method was separated with PEG2000, and its spherical particles of size was around 500nm. The hydro-thermal method could get perfect spherical appearance, but it needed heat treatment improve the luminescence property.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Yuxin Chen ◽  
Dan Dang ◽  
Binhang Yan ◽  
Yi Cheng

Composite catalysts of mixed metal oxides were prepared by mixing a phase-pure M1 MoVNbTeOx with anatase-phase TiO2. Two methods were used to prepare the composite catalysts (the simple physically mixed or sol-gel method) for the improvement of the catalytic performance in the oxidative dehydrogenation of ethane (ODHE) process. The results showed that TiO2 particles with a smaller particle size were well dispersed on the M1 surface for the sol-gel method, which presented an excellent activity for ODHE. At the same operating condition (i.e., the contact time of 7.55 gcat·h/molC2H6 and the reaction temperature of 400 °C), the M1-TiO2-SM and M1-TiO2-PM achieved the space time yields of 0.67 and 0.52 kgC2H4/kgcat/h, respectively, which were about ~76% and ~35% more than that of M1 catalyst (0.38 kgC2H4/kgcat/h), respectively. The BET, ICP, XRD, TEM, SEM, H2-TPR, C2H6-TPSR, and XPS techniques were applied to characterize the catalysts. It was noted that the introduction of TiO2 raised the V5+ abundance on the catalyst surface as well as the reactivity of active oxygen species, which made contribution to the promotion of the catalytic performance. The surface morphology and crystal structure of used catalysts of either M1-TiO2-SM or M1-TiO2-PM remained stable as each fresh catalyst after 24 h time-on-stream tests.


2015 ◽  
Vol 719-720 ◽  
pp. 132-136 ◽  
Author(s):  
Ghazaleh Allaedini ◽  
Siti Masrinda Tasirin ◽  
Meor Zainal Meor Talib ◽  
Payam Aminayi ◽  
Ifa Puspasari

This study presents comparisons between the morphologies and photoluminescence properties of tin oxide (SnO2) nanoparticles prepared by two methods, namely the sol gel and the co-precipitation methods. The characteristics of the particles were analyzed using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The particles prepared using the sol-gel method have a finer particle size and more spherical shape. However, no significant difference was observed in terms of morphology and homogeneity in the samples produced by either the co-precipitation or sol-gel methods. In contrast, the photoluminescence study shows that the emission peak for powder prepared using the sol-gel method was higher than that of the co-precipitation method.


2015 ◽  
Vol 10 (1) ◽  
pp. 2566-2582
Author(s):  
Anwar Ul Haq ◽  
Farwa Mushtaq ◽  
M. Anis-ur-Rehman

Ba1-xPbxFe12O19 composition (x=0.0 to 1.0) synthesized by Co-precipitation and Sol-Gel  methods. In Co-precipitation method BaCO3, PbO and Fe (NO3)3 .9H2O were used as basic ingredients. Acids and Di-H2O  were used as solvents. Molar ratio of cations was 12.   pH of solution kept constant at 13.  All samples sintered at 965±5oC for three hours.  Lead own properties, synthesis at room temperature and substitution in R-block of structure were the reasons for decrease of phase purity from “x” =0.0 to 70% for “x”=1.0. Decrease in phase purity   and heterogeneity of material caused the properties to decrease. In Sol gel method, Nitrates (salts) and Ethylene glycol (liquid) were the basic material used. The mixed solutions dried out on a hot plate whose temperature was maintained constant at 200±2oC. Pellets formed by applying suitable hydraulic pressure and then sintered at same temperature written above i.e. 965±5oC for three hours. 100% phase purity achieved. All properties modified. Temperature and frequency dependent electrical properties investigated and reported here. DC and AC obtained properties were useful for different electronics and computer devices like capacitors, smart storage devices and multilayer chip inductors. Overall, both these properties improved through sol-gel method as compared to co-precipitation method. It was because of improvement in phase purity and change in morphology of synthesized material. 


2010 ◽  
Vol 63 ◽  
pp. 107-113
Author(s):  
Tsugio Sato ◽  
Xiang Wen Liu ◽  
Shu Yin

The hybrid materials consisting of plate-like potassium lithium titanate (K0.81Li0.27Ti1.73O4) micro particles coated with calcia-doped ceria (Ce0.8Ca0.2O1.8) nano particles were prepared by the co-precipitation method and sol-gel method. Broad-spectrum UV-shielding composite materials with good comfort and low oxidation catalytic activity were successfully synthesized. The comfort when applied on skin and UV-shielding ability of the composites prepared by the sol-gel method were superior to those by the co-precipitation method.


2007 ◽  
Vol 14 (04) ◽  
pp. 611-615 ◽  
Author(s):  
YING WU ◽  
TINGHUA WU ◽  
YIMING HE ◽  
WEIZHENG WENG ◽  
HUILIN WAN

Nanosized Ti – Ni – O catalysts prepared by a modified sol–gel method had been investigated in the oxidative dehydrogenation of ethane and propane to the corresponding alkene. The best yield is obtained over the 9.1 wt% Ti – Ni – O catalyst. The results of catalyst characterization indicated that there is strong interaction between TiO 2 and NiO . It is observed that a decline in temperature for low-temperature oxygen desorption and an augmentation in reduction difficulty of the catalysts would result in poor activity and enhanced alkene selectivity, respectively, over the Ti – Ni – O catalysts in the oxidative dehydrogenation reactions.


2011 ◽  
Vol 328-330 ◽  
pp. 1365-1368
Author(s):  
Chang Sen Zhang ◽  
Lei Yang ◽  
Feng Zhou

Cobalt ferrites were prepared by citrate sol-gel method, chemical co-precipitation, mechanical grinding, respectively. The grain size, morphology, and the size of crystal particles were studied by x-ray diffraction (XRD) and scanning electron microscope (SEM). Cobalt ferrite showed different morphologys when prepared by different methods, It was tapered corners which prepared by sol-gel method; It was tetrahedral which prepared by mechanical grinding method; It was sphere which prepared by chemical co-precipitation method. The average grain size of cobalt ferrite was less than 100nm, while particles prepared by chemical precipitation method were the smallest. The size of Cobalt ferrite prepared by sol-gel method was decreased with the cobalt content increased.


2015 ◽  
Vol 740 ◽  
pp. 3-6
Author(s):  
Guo Yuan Cheng ◽  
Xing Hua Fu ◽  
Xin Jin ◽  
Wen Hong Tao ◽  
Yu Qin Qiang

KNN-BF piezoelectric ceramics synthesized by sol-gel method in this experiment. By controlling bismuth and iron content in the system to study effects of them. We selected citric acid as metal chelator and ethylene glycol as esterification agent. PH maintained 5-6 during preparation of the sol. Sintering temperature of ceramic selected 1100°C. Preparation ceramics under these conditions and comparative analysis, the structure of ceramics is single perovskite and shap of crystals are square block. With the increase of x, properties of ceramics firstly increases and then decreases: d33, εr, Qm, Kpreaching the maximum, values of them were 136pC/N, 630(f =1KHz), 212, 0.41 respectively; dielectric loss to minimum is 0.07(f =1KHz); at this point, ceramics had best performance.


Sign in / Sign up

Export Citation Format

Share Document