scholarly journals Grafting nanocellulose with diethylenetriaminepentaacetic acid and chitosan as additive for enhancing recycled OCC pulp fibres

Cellulose ◽  
2022 ◽  
Author(s):  
Ao Li ◽  
Dezhong Xu ◽  
Mengnan Zhang ◽  
Shengzhong Wu ◽  
Yu Li ◽  
...  

AbstractThis paper develops a novel paper additive for effectively recycling old corrugated container (OCC) by functionalizing nanocellulose (NC) with diethylenetriaminepentaacetic acid (DTPA) and chitosan (CS), and investigate the reinforcing mechanisms and effect of the developed additive on the physical properties of recycled OCC pulp handsheets. The tensile, tear and burst index, air permeability, tensile energy absorption (TEA), and drainage performance of the recycled OCC handsheets are examined. Fourier transform infrared FTIR) spectroscopy, thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM) are used for the chemical and microstructure characterization of both NC based additives and paper from recycled OCC pulp. The results show that functional groups on the NC based additive, such as carboxyl, amino and hydroxyl groups, can bond with the hydroxyl groups on the recycled OCC fibres to generate a chemical bond. This leads to an increase in the crosslinks and bonding area between the fibres, which increases their tensile strength and improves their recycling rate. SEM shows that the paper with NC based additives had tighter inter-fibre bonds and smaller paper pore structure. Addition of 0.3% NC-DTPA-CS additive results in optimal properties of the recycled OCC paper with an increase by 31.64%, 22.28% and 36.6% of tensile index, tear index, burst index respectively, and the air permeability decreases by 36.92%. Graphical Abstract

2021 ◽  
Author(s):  
Ao Li ◽  
Dezhong Xu ◽  
Mengnan Zhang ◽  
Shengzhong Wu ◽  
Yu Li ◽  
...  

Abstract This paper is to develop a novel paper additive for effectively recycling old corrugated container (OCC) by functionalizing nanocellulose (NC) with diethylenetriaminepentaacetic acid (DTPA) and chitosan (CS), and investigate the reinforcing mechanisms and effect of the developed additive on the physical properties of recycled OCC pulp handsheets. The tensile, tear and bursting strength, whiteness, air permeability, tensile energy absorption of the recycled OCC handsheets are examined. Fourier transform infrared FTIR) spectroscopy, thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM) are used for the chemical and microstructure characterization of both NC based additives and recycled OCC pulp paper. The results show that the functional groups, such as carboxyl, amino and hydroxyl groups on the NC based additives, can combine with the hydroxyl groups on the recycled OCC fibres to generate chemical bonds, which increase the crosslinks between fibres as well as the bonding area, thus enhancing their tensile strength and improving their recycling rate. SEM shows that the paper with NC based additives had tighter inter-fibre bonds and smaller paper pore structure. Addition of 0.2% NC-DTPA-CS additive results in optimal properties of the recycled OCC paper with an increase by 32%, 188%, 19% and 35% of tensile strength, tearing degree, breaking resistance and air permeability respectively.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 69-75
Author(s):  
Haoran Yun ◽  
Xingxiang Zhang

AbstractMicrospheres with phase change properties were fabricated by polymerization of hexadecyl acrylate (HA) and different cross-linking agents. The samples were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA). The results show that, the samples that added cross-linking agents have a smooth surface and the latent heat of them is different. The experiments show that all of the cross-linked copolymer shells can be made into temperature controlled release microspheres. These materials can be potentially applied in the field of thermal energy storage. β-tricalcium phosphate was encapsulated in microspheres to obtain one with a fast release effect. It will effectively promote bone conduction when these microspheres were implanted into a bone defect. This microsphere can be used for orthopedic implant or coating of instrument in the future.


1992 ◽  
Vol 271 ◽  
Author(s):  
Joseph E. Sunstrom ◽  
Susan M. Kauzlarich

ABSTRACTThe compounds La1−xBaxTiO3 (0 ≤ × ≤ 1) have been prepared by arc melting stoichiometric amounts of LaTiO3 and BaTiO3. Single phase samples can be made for the entire stoichiometry range. The polycrystalline samples have been characterized by thermal gravimetric analysis, X-ray powder diffraction, and temperature dependent magnetic susceptibility. This series of compounds has been studied as a possible candidate for an early transition metal superconductor.


2008 ◽  
Vol 62 (4) ◽  
Author(s):  
Hamada Abdel-Razik

AbstractSynthesis, characterization and application of diaminomaleonitrile (DAMN)-functionalized polystyrene grafts were studied. Dibenzoyle peroxide (BP) was used as an initiator. Optimum conditions for grafting were found to be c(DAMN) = 0.5 M, c(BP) = 0.016 M, θ = 85 °C and t = 4 h. Water uptake of the polystyrene graft membranes was found to increase with the increase of the grafting yield. The chemical structure, thermal characteristics and thermal stability of the obtained membranes were investigated by means of FTIR spectroscopy, differential scanning calorimetry, and thermal gravimetric analysis. Polystyrene graft membrane with the degree of grafting of up to 96 % was found to be useful for the pervaporation separation of phenol/water mixtures.


2015 ◽  
Vol 25 (6) ◽  
pp. 468-469 ◽  
Author(s):  
Igor N. Leontyev ◽  
Daria V. Leontyeva ◽  
Alexandra B. Kuriganova ◽  
Yurii V. Popov ◽  
Olga A. Maslova ◽  
...  

2021 ◽  
Author(s):  
Roni Maryana ◽  
Muryanto Muryanto ◽  
Eka Triwahyuni ◽  
Oktaviani Oktaviani ◽  
Hafiizh Prasetia ◽  
...  

Abstract This study was carried out to investigate the extraction of cellulose acetate (CA) from cajuput (Melaleuca leucadendron) twigs and sugarcane (Saccharum officinarum) bagasse using an environmentally friendly method. At first, cellulose was extracted from cajuput twigs (CT) and sugarcane bagasse (SB) through prehydrolysis followed by soda (NaOH) pulping and elementary chlorine-free (ECF) bleaching. Later, the extracted cellulose was acetylated using iodine (I) as a catalyst. The obtained CA was characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), scanning electron microscope (SEM) and X-ray diffraction. FTIR and NMR analysis proved the replacement of free OH (hydroxyl) groups by acetyl groups. The degree of substitution (DS) showed the acetylation capability of cellulose extracted from CT and SB as well. The cellulose diameter and its crystallinity index were measured by SEM and X-ray diffraction, respectively. Furthermore, the thermal gravimetric analysis showed that CA extracted from CT and SB was thermal resistance. Therefore, CT and SB could be potential alternative resources for CA production using the mentioned method.


2013 ◽  
Vol 8 (2) ◽  
pp. 95-101
Author(s):  
Alexey Zaikovsky ◽  
Aleksandr Fedoseev ◽  
Salavat Sakhapov ◽  
Anton Evtushenko ◽  
Marina Serebriakova ◽  
...  

Experimental investigations of the possibility of arc discharge method for synthesis of nanoparticles of oxides and carbides of tungsten and aluminum have been presented. The method is based on anode atomization of composed graphite – aluminum and graphite – WO3 electrodes. The transmitted electron microscopy, thermal gravimetric analysis and X-ray diffraction were applied for the characterization of morphology and properties of synthesized materials. It was experimentally shown the arc discharge method allows to syntheses the nanoparticles of oxides and carbides of tungsten and aluminum


1994 ◽  
Vol 6 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Kamal I Aly

A new interesting class of linear unsaturated polycarbonates based on 3,5-bis(p-hydroxybenzylidene)-isopropylpiperidinone (T), 3,5-divanillylidene isopropylpiperidinone (IT), or 3,5-bis(m-hydroxybenzylidene)-isopropylpiperidinone (III) have been synthesized. An interfacial phosgenation technique carried out at ambient temperature was used for the synthesis of the polycarbonates. The resulting polycarbonates were characterized by elemental analyses, infrared spectroscopy, 1H nuclear magnetic resonance spectral analysis, solubility and viscometry. The thermal behaviour of the synthesized polymers was evaluated by thermal gravimetric analysis and correlated with their structures. The crystallinity of all polymers was examined by x-ray diffraction analysis.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 455 ◽  
Author(s):  
Gurushanth B Vaggar ◽  
S C Kamate ◽  
Pramod V Badyankal

In the current work characterization of thermal properties are find out to the prepared specimens of silicon filler hybrid composite materials (silicon filler glass – fiber chop strand). The specimens were prepared by hand layup followed by compression molding machine by non-heating molding technique. Thermal conductivity (K), Coefficient thermal expansion (CTE) and Thermal gravimetric analysis (TGA) are found by composite slab method and by thermal muffler oven in a laboratory. The guard heater is used to supply heat which is measured by voltmeter and ammeter. Thermocouples are placed between the interface of the copper plates and the specimen of silicon filled hybrid polymer composite material (HPC), to read the temperatures. By the experimental readings it is found that the K of silicon filler hybrid composite material directly proportional to the % of silicon fillers for the different trails. The CTE inversely varies with % of silicon fillers and in thermal gravimetric analysis the failure of material takes place at 300°C for a time of 20 minutes and also reduction in mass of silicon inserted hybrid composite material. From the results it has been concluded that the considerable enhance in thermal conductivity with negligible decrease in CTE and increase in thermal resistivity of hybrid composite materials.  


2021 ◽  
Author(s):  
Fatemeh Shateran ◽  
Mohammad Ali Ghasemzadeh

Abstract Metal-organic frameworks (MOFs) are developing as a powerful platform for the delivery and controlled release of drugs. In this study, we reported a novel magnetic framework including MgFe2O4@MIL-53(Al) for the delivery of tetracycline (TC) antibiotic. The obtained results of this research showed that 88% of the TC was loaded on the MgFe2O4@MIL-53(Al). The drug release study was performed in pH: 7.4 and pH: 5.0 which showed 75% and 83% release within 3 days. Moreover, antibacterial activities tests based on well agar diffusion were performed against Staphylococcus aureus and Escherichia coli bacteria which exhibited satisfactory antibacterial properties of TC-loaded MgFe2O4@MIL-53(Al). Moreover, the prepared structures including MgFe2O4@MIL-53(Al) and MgFe2O4@MIL-53(Al)/TC were identified using Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Scanning electron microscope (SEM) and thermal gravimetric analysis (TGA).


Sign in / Sign up

Export Citation Format

Share Document