scholarly journals Evidence for Menopause as a Sex-Specific Risk Factor for Glaucoma

Author(s):  
Amber Douglass ◽  
Michael Dattilo ◽  
Andrew J. Feola

AbstractGlaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive loss of visual function and retinal ganglion cells (RGC). Current epidemiological, clinical, and basic science evidence suggest that estrogen plays a role in the aging of the optic nerve. Menopause, a major biological life event affecting all women, coincides with a decrease in circulating sex hormones, such as estrogen. While 59% of the glaucomatous population are females, sex is not considered a risk factor for developing glaucoma. In this review, we explore whether menopause is a sex-specific risk factor for glaucoma. First, we investigate how menopause is defined as a sex-specific risk factor for other pathologies, including cardiovascular disease, osteoarthritis, and bone health. Next, we discuss clinical evidence that highlights the potential role of menopause in glaucoma. We also highlight preclinical studies that demonstrate larger vision and RGC loss following surgical menopause and how estrogen is protective in models of RGC injury. Lastly, we explore how surgical menopause and estrogen signaling are related to risk factors associated with developing glaucoma (e.g., intraocular pressure, aqueous outflow resistance, and ocular biomechanics). We hypothesize that menopause potentially sets the stage to develop glaucoma and therefore is a sex-specific risk factor for this disease. Graphical Abstract

2019 ◽  
Author(s):  
F. Prato ◽  
G. Genoni ◽  
R. Broglia Franchin ◽  
C. Vivenza ◽  
B. Loperfido ◽  
...  

2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Olivia J. Marola ◽  
Stephanie B. Syc-Mazurek ◽  
Gareth R. Howell ◽  
Richard T. Libby

Abstract Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells (RGCs), the output neurons of the retina. Multiple lines of evidence show the endothelin (EDN, also known as ET) system is important in glaucomatous neurodegeneration. To date, the molecular mechanisms within RGCs driving EDN-induced RGC death have not been clarified. The pro-apoptotic transcription factor JUN (the canonical target of JNK signaling) and the endoplasmic reticulum stress effector and transcription factor DNA damage inducible transcript 3 (DDIT3, also known as CHOP) have been shown to act downstream of EDN receptors. Previous studies demonstrated that JUN and DDIT3 were important regulators of RGC death after glaucoma-relevant injures. Here, we characterized EDN insult in vivo and investigated the role of JUN and DDIT3 in EDN-induced RGC death. To accomplish this, EDN1 ligand was intravitreally injected into the eyes of wildtype, Six3-cre+Junfl/fl (Jun−/−), Ddit3 null (Ddit3−/−), and Ddit3−/−Jun−/− mice. Intravitreal EDN1 was sufficient to drive RGC death in vivo. EDN1 insult caused JUN activation in RGCs, and deletion of Jun from the neural retina attenuated RGC death after EDN insult. However, deletion of Ddit3 did not confer significant protection to RGCs after EDN1 insult. These results indicate that EDN caused RGC death via a JUN-dependent mechanism. In addition, EDN signaling is known to elicit potent vasoconstriction. JUN signaling was shown to drive neuronal death after ischemic insult. Therefore, the effects of intravitreal EDN1 on retinal vessel diameter and hypoxia were explored. Intravitreal EDN1 caused transient retinal vasoconstriction and regions of RGC and Müller glia hypoxia. Thus, it remains a possibility that EDN elicits a hypoxic insult to RGCs, causing apoptosis via JNK-JUN signaling. The importance of EDN-induced vasoconstriction and hypoxia in causing RGC death after EDN insult and in models of glaucoma requires further investigation.


Development ◽  
1994 ◽  
Vol 120 (6) ◽  
pp. 1643-1649 ◽  
Author(s):  
K.H. Herzog ◽  
K. Bailey ◽  
Y.A. Barde

Using a sensitive and quantitative method, the mRNA levels of brain-derived neurotrophic factor (BDNF) were determined during the development of the chick visual system. Low copy numbers were detected, and BDNF was found to be expressed in the optic tectum already 2 days before the arrival of the first retinal ganglion cell axons, suggesting an early role of BDNF in tectal development. After the beginning of tectal innervation, BDNF mRNA levels markedly increased, and optic stalk transection at day 4 (which prevents subsequent tectal innervation) was found to reduce the contralateral tectal levels of BDNF mRNA. Comparable reductions were obtained after injection of tetrodotoxin into one eye, indicating that, already during the earliest stages of target encounter in the CNS, the degree of BDNF gene expression is influenced by activity-dependent mechanisms. BDNF mRNA was also detected in the retina itself and at levels comparable to those found in the tectum. Together with previous findings indicating that BDNF prevents the death of cultured chick retinal ganglion cells, these results support the idea that the tightly controlled expression of the BDNF gene might be important in the co-ordinated development of the visual system.


2011 ◽  
Vol 52 (8) ◽  
pp. 5515 ◽  
Author(s):  
Preethi S. Ganapathy ◽  
Richard E. White ◽  
Yonju Ha ◽  
B. Renee Bozard ◽  
Paul L. McNeil ◽  
...  

2014 ◽  
Vol 55 (4) ◽  
pp. 362-371 ◽  
Author(s):  
Florian Weck ◽  
Julia M.B. Neng ◽  
Kathrin Göller ◽  
Alexis M. Müller-Marbach

Sign in / Sign up

Export Citation Format

Share Document