scholarly journals Correction to: A secure authentication technique for connecting different IoT devices in the smart city infrastructure

2021 ◽  
Author(s):  
Rohit Sharma ◽  
Rajeev Arya
2020 ◽  
Vol 12 (14) ◽  
pp. 5595 ◽  
Author(s):  
Ana Lavalle ◽  
Miguel A. Teruel ◽  
Alejandro Maté ◽  
Juan Trujillo

Fostering sustainability is paramount for Smart Cities development. Lately, Smart Cities are benefiting from the rising of Big Data coming from IoT devices, leading to improvements on monitoring and prevention. However, monitoring and prevention processes require visualization techniques as a key component. Indeed, in order to prevent possible hazards (such as fires, leaks, etc.) and optimize their resources, Smart Cities require adequate visualizations that provide insights to decision makers. Nevertheless, visualization of Big Data has always been a challenging issue, especially when such data are originated in real-time. This problem becomes even bigger in Smart City environments since we have to deal with many different groups of users and multiple heterogeneous data sources. Without a proper visualization methodology, complex dashboards including data from different nature are difficult to understand. In order to tackle this issue, we propose a methodology based on visualization techniques for Big Data, aimed at improving the evidence-gathering process by assisting users in the decision making in the context of Smart Cities. Moreover, in order to assess the impact of our proposal, a case study based on service calls for a fire department is presented. In this sense, our findings will be applied to data coming from citizen calls. Thus, the results of this work will contribute to the optimization of resources, namely fire extinguishing battalions, helping to improve their effectiveness and, as a result, the sustainability of a Smart City, operating better with less resources. Finally, in order to evaluate the impact of our proposal, we have performed an experiment, with non-expert users in data visualization.


2021 ◽  
Vol 13 (9) ◽  
pp. 4716
Author(s):  
Moustafa M. Nasralla

To develop sustainable rehabilitation systems, these should consider common problems on IoT devices such as low battery, connection issues and hardware damages. These should be able to rapidly detect any kind of problem incorporating the capacity of warning users about failures without interrupting rehabilitation services. A novel methodology is presented to guide the design and development of sustainable rehabilitation systems focusing on communication and networking among IoT devices in rehabilitation systems with virtual smart cities by using time series analysis for identifying malfunctioning IoT devices. This work is illustrated in a realistic rehabilitation simulation scenario in a virtual smart city using machine learning on time series for identifying and anticipating failures for supporting sustainability.


Author(s):  
Fei Meng ◽  
Leixiao Cheng ◽  
Mingqiang Wang

AbstractCountless data generated in Smart city may contain private and sensitive information and should be protected from unauthorized users. The data can be encrypted by Attribute-based encryption (CP-ABE), which allows encrypter to specify access policies in the ciphertext. But, traditional CP-ABE schemes are limited because of two shortages: the access policy is public i.e., privacy exposed; the decryption time is linear with the complexity of policy, i.e., huge computational overheads. In this work, we introduce a novel method to protect the privacy of CP-ABE scheme by keyword search (KS) techniques. In detail, we define a new security model called chosen sensitive policy security: two access policies embedded in the ciphertext, one is public and the other is sensitive and hidden. If user's attributes don't satisfy the public policy, he/she cannot get any information (attribute name and its values) of the hidden one. Previous CP-ABE schemes with hidden policy only work on the “AND-gate” access structure or their ciphertext size or decryption time maybe super-polynomial. Our scheme is more expressive and compact. Since, IoT devices spread all over the smart city, so the computational overhead of encryption and decryption can be shifted to third parties. Therefore, our scheme is more applicable to resource-constrained users. We prove our scheme to be selective secure under the decisional bilinear Diffie-Hellman (DBDH) assumption.


Author(s):  
Hamza Sajjad Ahmad ◽  
Muhammad Junaid Arshad ◽  
Muhammad Sohail Akram

To send data over the network, devices need to authenticate themselves within the network. After authentication, the device will be able to send the data in-network. After authentication, secure communication of devices is an important task that is done with an encryption method. IoT network devices have a very small circuit with low resources and low computation power. By considering low power, less memory, low computation, and all the aspect of IoT devices, an encryption technique is needed that is suitable for this type of device. As IoT networks are heterogeneous, each device has different hardware properties, and all the devices are not on one scale. To make IoT networks secure, this paper starts with the secure authentication mechanism to verify the device that wants to be a part of the network. After that, an encryption algorithm is presented that will make the communication secure. This encryption algorithm is designed by considering all the important aspects of IoT devices (low computation, low memory, and cost).


Author(s):  
Hector Rico-Garcia ◽  
Jose-Luis Sanchez-Romero ◽  
Antonio Jimeno-Morenilla ◽  
Hector Migallon-Gomis

The development of the smart city concept and the inhabitants’ need to reduce travel time, as well as society’s awareness of the reduction of fuel consumption and respect for the environment, lead to a new approach to the classic problem of the Travelling Salesman Problem (TSP) applied to urban environments. This problem can be formulated as “Given a list of geographic points and the distances between each pair of points, what is the shortest possible route that visits each point and returns to the departure point?” Nowadays, with the development of IoT devices and the high sensoring capabilities, a large amount of data and measurements are available, allowing researchers to model accurately the routes to choose. In this work, the purpose is to give solution to the TSP in smart city environments using a modified version of the metaheuristic optimization algorithm TLBO (Teacher Learner Based Optimization). In addition, to improve performance, the solution is implemented using a parallel GPU architecture, specifically a CUDA implementation.


Author(s):  
Rajan R. ◽  
Venkata Subramanian Dayanandan ◽  
Shankar P. ◽  
Ranganath Tngk

A smart city aims at developing an ecosystem wherein the citizens will have instant access to amenities required for a healthy and safe living. Since the mission of smart city is to develop and integrate many facilities, it is envisaged that there is a need for making the information available instantly for right use of such infrastructure. So, there exists a need to design and implement a world-class physical security measures which acts as a bellwether to protect people life from physical security threats. It is a myth that if placing adequate number of cameras alone would enhance physical security controls in smart cities. There is a need for designing and building comprehensive physical security controls, based on the principles of “layered defense-in-depth,” which integrates all aspects of physical security controls. This chapter will review presence of existing physical security technology controls for smart cities in line with the known security threats and propose the need for an AI-enabled physical security premise.


2021 ◽  
Vol 11 (4) ◽  
pp. 3823-3836
Author(s):  
Maha Mohamed Ahmed Al Habsi ◽  
Smitha Sunil Kumaran Nair ◽  
Said Juma Said Juma Al Sulti ◽  
S. Adarsh

The rise of connected world is a reality through Internet of Things (IoT) technology and is increasingly changing the way people live, communicate and work. Perhaps, for a continued support to be delivered efficiently and effectively in terms of the services IoT offers, there are some challenges which need attention. This is basically the security aspects pertaining to the data the IoT devices generate, collect and process. In the recent years, blockchain technology gained attention in cutting edge solutions based on securing IoT devices. However, it is observed that adoption of blockchain technology is limited in several countries. The proposed research aims to investigate potential barriers to adopting blockchain technology in smart city applications through a qualitative study. In addition, a stake algorithm to demonstrate the security aspect in IoT device is presented.


Sign in / Sign up

Export Citation Format

Share Document