Fog computing in enabling 5G-driven emerging technologies for development of sustainable smart city infrastructures

2022 ◽  
Author(s):  
Siddhant Jain ◽  
Shashank Gupta ◽  
K. K. Sreelakshmi ◽  
Joel J. P. C. Rodrigues
Author(s):  
Subhranshu Sekhar Tripathy ◽  
Diptendu Sinha Roy ◽  
Rabindra K. Barik

Nowadays, cities are intended to change to a smart city. According to recent studies, the use of data from contributors and physical objects in many cities play a key element in the transformation towards a smart city. The ‘smart city’ standard is characterized by omnipresent computing resources for the observing and critical control of such city’s framework, healthcare management, environment, transportation, and utilities. Mist computing is considered a computing prototype that performs IoT applications at the edge of the network. To maintain the Quality of Service (QoS), it is impressive to employ context-aware computing as well as fog computing simultaneously. In this article, the author implements an optimization strategy applying a dynamic resource allocation method based upon genetic algorithm and reinforcement learning in combination with a load balancing procedure. The proposed model comprises four layers i.e. IoT layer, Mist layer, Fog layer, and Cloud layer. Authors have proposed a load balancing technique called M2F balancer which regulates the traffic in the network incessantly, accumulates the information about each server load, transfer the incoming query, and disseminate them among accessible servers equally using dynamic resources allocation method. To validate the efficacy of the proposed algorithm makespan, resource utilization, and the degree of imbalance (DOI) are considered as the scheduling parameter. The proposed method is being compared with the Least count, Round Robin, and Weighted Round Robin. In the end, the results demonstrate that the solutions enhance QoS in the mist assisted cloud environment concerning maximization resource utilization and minimizing the makespan. Therefore, M2FBalancer is an effective method to utilize the resources efficiently by ensuring uninterrupted service. Consequently, it improves performance even at peak times.


2021 ◽  
pp. 191-213
Author(s):  
Naishadh Mehta ◽  
Anand Ruparelia ◽  
Jai Prakash Verma
Keyword(s):  

Author(s):  
Mais Haj Qasem ◽  
Alaa Abu-Srhan ◽  
Hutaf Natoureah ◽  
Esra Alzaghoul

Fog-computing is a new network architecture and computing paradigm that uses user or near-users devices (network edge) to carry out some processing tasks. Accordingly, it extends the cloud computing with more flexibility the one found in the ubiquitous networks. A smart city based on the concept of fog-computing with flexible hierarchy is proposed in this paper. The aim of the proposed design is to overcome the limitations of the previous approaches, which depends on using various network architectures, such as cloud-computing, autonomic network architecture and ubiquitous network architecture. Accordingly, the proposed approach achieves a reduction of the latency of data processing and transmission with enabled real-time applications, distribute the processing tasks over edge devices in order to reduce the cost of data processing and allow collaborative data exchange among the applications of the smart city. The design is made up of five major layers, which can be increased or merged according to the amount of data processing and transmission in each application. The involved layers are connection layer, real-time processing layer, neighborhood linking layer, main-processing layer, data server layer. A case study of a novel smart public car parking, traveling and direction advisor is implemented using IFogSim and the results showed that reduce the delay of real-time application significantly, reduce the cost and network usage compared to the cloud-computing paradigm. Moreover, the proposed approach, although, it increases the scalability and reliability of the users’ access, it does not sacrifice much time, nor cost and network usage compared to fixed fog-computing design.


Author(s):  
Ioan-Mădălin Neagu

Abstract In the present paper, a fog computing framework for smart urban transport is developed. The proposed framework is adapted to the smart city concept. It uses a collaborative multitude of end-user clients to carry out a substantial amount of communication and computation. It can be adapted for specific situations of smart cities in Romania, such as: Cluj-Napoca, Timișoara, Iași or Bucharest. Economic and social implications as well as available European funding sources are presented.


2020 ◽  
Vol 1 (1) ◽  
pp. 7-13
Author(s):  
Bayu Prastyo ◽  
Faiz Syaikhoni Aziz ◽  
Wahyu Pribadi ◽  
A.N. Afandi

Internet use in Banyumas Regency is now increasingly diverse according to the demands of the needs. The development of communication technology raises various aspects that also develop. For example, the use of the internet for a traffic light control system so that it can be adjusted according to the settings and can be monitored in real time. In the development of communication technology, the term Internet of Things (IoT) emerged as the concept of extending the benefits of internet communication systems to give impulses to other systems. In other words, IoT is used as a communication for remote control and monitoring by utilizing an internet connection. The Internet of Things in the era is now being developed to create an intelligent system for the purposes of controlling various public needs until the concept of the smart city emerges. Basically, smart cities utilize internet connections for many purposes such as controlling CCTV, traffic lights, controlling arm robots in the industry and storing data in hospitals. If the system is carried out directly from the device to the central server, there will be a very long queue of data while the system created requires speed and accuracy of time so that a system is needed that allows sufficient data control and processing to be carried out on network edge users. Then fog Computing is used with the hope that the smart city system can work with small latency values ​​so that the system is more real-time in sending or receiving data.


2020 ◽  
Vol 1 (2) ◽  
pp. 6-13
Author(s):  
Bayu Prastyo ◽  
Faiz Syaikhoni Aziz ◽  
Wahyu Pribadi ◽  
A.N. Afandi

Internet use in Banyumas Regency is now increasingly diverse according to the demands of the needs. The development of communication technology raises various aspects that also develop. For example, the use of the internet for a traffic light control system so that it can be adjusted according to the settings and can be monitored in real time. In the development of communication technology, the term Internet of Things (IoT) emerged as the concept of extending the benefits of internet communication systems to give impulses to other systems. In other words, IoT is used as a communication for remote control and monitoring by utilizing an internet connection. The Internet of Things in the era is now being developed to create an intelligent system for the purposes of controlling various public needs until the concept of the smart city emerges. Basically, smart cities utilize internet connections for many purposes such as controlling CCTV, traffic lights, controlling arm robots in the industry and storing data in hospitals. If the system is carried out directly from the device to the central server, there will be a very long queue of data while the system created requires speed and accuracy of time so that a system is needed that allows sufficient data control and processing to be carried out on network edge users. Then fog Computing is used with the hope that the smart city system can work with small latency values ​​so that the system is more real-time in sending or receiving data


Author(s):  
Ning Chen ◽  
Yu Chen ◽  
Xinyue Ye ◽  
Haibin Ling ◽  
Sejun Song ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document