An Analytical Approximation Formula for Barrier Option Prices Under the Heston Model

Author(s):  
Xin-Jiang He ◽  
Sha Lin
Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1878
Author(s):  
Siow Woon Jeng ◽  
Adem Kilicman

Rough Heston model possesses some stylized facts that can be used to describe the stock market, i.e., markets are highly endogenous, no statistical arbitrage mechanism, liquidity asymmetry for buy and sell order, and the presence of metaorders. This paper presents an efficient alternative to compute option prices under the rough Heston model. Through the decomposition formula of the option price under the rough Heston model, we manage to obtain an approximation formula for option prices that is simpler to compute and requires less computational effort than the Fourier inversion method. In addition, we establish finite error bounds of approximation formula of option prices under the rough Heston model for 0.1≤H<0.5 under a simple assumption. Then, the second part of the work focuses on the short-time implied volatility behavior where we use a second-order approximation on the implied volatility to match the terms of Taylor expansion of call option prices. One of the key results that we manage to obtain is that the second-order approximation for implied volatility (derived by matching coefficients of the Taylor expansion) possesses explosive behavior for the short-time term structure of at-the-money implied volatility skew, which is also present in the short-time option prices under rough Heston dynamics. Numerical experiments were conducted to verify the effectiveness of the approximation formula of option prices and the formulas for the short-time term structure of at-the-money implied volatility skew.


2018 ◽  
Vol 21 (08) ◽  
pp. 1850052
Author(s):  
R. MERINO ◽  
J. POSPÍŠIL ◽  
T. SOBOTKA ◽  
J. VIVES

In this paper, we derive a generic decomposition of the option pricing formula for models with finite activity jumps in the underlying asset price process (SVJ models). This is an extension of the well-known result by Alòs [(2012) A decomposition formula for option prices in the Heston model and applications to option pricing approximation, Finance and Stochastics 16 (3), 403–422, doi: https://doi.org/10.1007/s00780-012-0177-0 ] for Heston [(1993) A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies 6 (2), 327–343, doi: https://doi.org/10.1093/rfs/6.2.327 ] SV model. Moreover, explicit approximation formulas for option prices are introduced for a popular class of SVJ models — models utilizing a variance process postulated by Heston [(1993) A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies 6 (2), 327–343, doi: https://doi.org/10.1093/rfs/6.2.327 ]. In particular, we inspect in detail the approximation formula for the Bates [(1996), Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche mark options, The Review of Financial Studies 9 (1), 69–107, doi: https://doi.org/10.1093/rfs/9.1.69 ] model with log-normal jump sizes and we provide a numerical comparison with the industry standard — Fourier transform pricing methodology. For this model, we also reformulate the approximation formula in terms of implied volatilities. The main advantages of the introduced pricing approximations are twofold. Firstly, we are able to significantly improve computation efficiency (while preserving reasonable approximation errors) and secondly, the formula can provide an intuition on the volatility smile behavior under a specific SVJ model.


Author(s):  
Luca Vincenzo Ballestra

AbstractWe show that the performances of the finite difference method for double barrier option pricing can be strongly enhanced by applying both a repeated Richardson extrapolation technique and a mesh optimization procedure. In particular, first we construct a space mesh that is uniform and aligned with the discontinuity points of the solution being sought. This is accomplished by means of a suitable transformation of coordinates, which involves some parameters that are implicitly defined and whose existence and uniqueness is theoretically established. Then, a finite difference scheme employing repeated Richardson extrapolation in both space and time is developed. The overall approach exhibits high efficacy: barrier option prices can be computed with accuracy close to the machine precision in less than one second. The numerical simulations also reveal that the improvement over existing methods is due to the combination of the mesh optimization and the repeated Richardson extrapolation.


2021 ◽  
Vol 63 ◽  
pp. 143-162
Author(s):  
Xin-Jiang He ◽  
Sha Lin

We derive an analytical approximation for the price of a credit default swap (CDS) contract under a regime-switching Black–Scholes model. To achieve this, we first derive a general formula for the CDS price, and establish the relationship between the unknown no-default probability and the price of a down-and-out binary option written on the same reference asset. Then we present a two-step procedure: the first step assumes that all the future information of the Markov chain is known at the current time and presents an approximation for the conditional price under a time-dependent Black–Scholes model, based on which the second step derives the target option pricing formula written in a Fourier cosine series. The efficiency and accuracy of the newly derived formula are demonstrated through numerical experiments. doi:10.1017/S1446181121000274


2018 ◽  
Vol 33 (2) ◽  
pp. 258-290 ◽  
Author(s):  
Dan Pirjol ◽  
Lingjiong Zhu

We present a rigorous study of the short maturity asymptotics for Asian options with continuous-time averaging, under the assumption that the underlying asset follows the constant elasticity of variance (CEV) model. The leading order short maturity limit of the Asian option prices under the CEV model is obtained in closed form. We propose an analytical approximation for the Asian options prices which reproduces the exact short maturity asymptotics, and demonstrate good numerical agreement of the asymptotic results with Monte Carlo simulations and benchmark test cases for option parameters relevant for practical applications.


Sign in / Sign up

Export Citation Format

Share Document