scholarly journals Systemic deficiency of GM1 ganglioside in Parkinson’s disease tissues and its relation to the disease etiology

Author(s):  
Robert Ledeen ◽  
Suman Chowdhury ◽  
Zi-Hua Lu ◽  
Monami Chakraborty ◽  
Gusheng Wu

AbstractFollowing our initial reports on subnormal levels of GM1 in the substantia nigra and occipital cortex of Parkinson’s disease (PD) patients, we have examined additional tissues from such patients and found these are also deficient in the ganglioside. These include innervated tissues intimately involved in PD pathology such as colon, heart and others, somewhat less intimately involved, such as skin and fibroblasts. Finally, we have analyzed GM1 in peripheral blood mononuclear cells, a type of tissue apparently with no direct innervation, and found those too to be deficient in GM1. Those patients were all afflicted with the sporadic form of PD (sPD), and we therefore conclude that systemic deficiency of GM1 is a characteristic of this major type of PD. Age is one factor in GM1 decline but is not sufficient; additional GM1 suppressive factors are involved in producing sPD. We discuss these and why GM1 replacement offers promise as a disease-altering therapy.

2019 ◽  
Vol 149 (12) ◽  
pp. 2110-2119 ◽  
Author(s):  
Zi-Qiang Shao ◽  
Xiong Zhang ◽  
Hui-Hui Fan ◽  
Xiao-Shuang Wang ◽  
Hong-Mei Wu ◽  
...  

ABSTRACT Background Selenium is prioritized to the brain mainly for selenoprotein expression. Selenoprotein T (SELENOT) protects dopaminergic, postmitotic neurons in a mouse model of Parkinson's disease (PD). Objective We hypothesized a proliferative role of SELENOT in neural cells. Methods To assess SELENOT status in PD, sedated male C57BL/6 mice at 10–12 wk of age were injected with 6-hydroxydopamine in neurons, and human peripheral blood mononuclear cells were isolated from 9 healthy subjects (56% men, 68-y-old) and 11 subjects with PD (64% men, 63-y-old). Dopaminergic neural progenitor–like SK-N-SH cells with transient SELENOT overexpression or knockdown were maintained in the presence or absence of the antioxidant N-acetyl-l-cysteine and the calcium channel blocker nimodipine. Cell cycle, proliferation, and signaling parameters were determined by immunoblotting, qPCR, and flow cytometry. Results SELENOT mRNA abundance was increased (P < 0.05) in SK-N-SH cells treated with 1-methyl-4-phenylpyridinium iodide (3.5-fold) and peripheral blood mononuclear cells from PD patients (1.6-fold). Likewise, SELENOT was expressed in tyrosine hydroxylase–positive dopaminergic neurons of 6-hydroxydopamine–injected mice. Knockdown of SELENOT in SK-N-SH cells suppressed (54%; P < 0.05) 5-ethynyl-2′-deoxyuridine incorporation but induced (17–47%; P < 0.05) annexin V–positive cells, CASPASE-3 cleavage, and G1/S cell cycle arrest. SELENOT knockdown and overexpression increased (88–120%; P < 0.05) and reduced (37–42%; P < 0.05) both forkhead box O3 and p27, but reduced (51%; P < 0.05) and increased (1.2-fold; P < 0.05) cyclin-dependent kinase 4 protein abundance, respectively. These protein changes were diminished by nimodipine or N-acetyl-l-cysteine treatment (24 h) at steady-state levels. While the N-acetyl-l-cysteine treatment did not influence the reduction in the amount of calcium (13%; P < 0.05) by SELENOT knockdown, the nimodipine treatment reversed the decreased amount of reactive oxygen species (33%; P < 0.05) by SELENOT overexpression. Conclusions These cellular and mouse data link SELENOT to neural proliferation, expanding our understanding of selenium protection in PD.


2015 ◽  
Vol 30 (13) ◽  
pp. 1830-1834 ◽  
Author(s):  
Nikolaos Papagiannakis ◽  
Maria Xilouri ◽  
Christos Koros ◽  
Maria Stamelou ◽  
Roubina Antonelou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document