Spectral Manifestations of Specific Solvation of 5,10,15,20-Tetrakis-(4-Sulfonatophenyl)-Porphyrin and its Doubly Protonated Form in Aqueous Solutions

Author(s):  
P. G. Klimovich ◽  
A. B. Krylov ◽  
M. M. Kruk
Author(s):  
Ekaterina V. Naidenko ◽  
Sergei V. Makarov ◽  
Elizaveta A. Pokrovskaya ◽  
Anton M. Nikulin

Thiourea dioxide (TDO, aminoiminomethanesulfinic acid, formamidinesulfinic acid) was used for the chemical modification of chitosan. The interaction of TDO with chitosan in the presence of alkali results in the guanidinylated chitosan, the substitution degree is 0.25-0.27 and does not depend largely on molar ratio of thiourea dioxide to chitosan. The structure of modified chitosan has been proved using UV and IR spectroscopy as well as elemental analysis. It is shown that modification of chitosan proceeds under mild conditions. Contrary to chitosan, its guanidinylated derivative has biocidal properties against Gram-positive and Gram-negative bacteria in the aqueous solutions close to neutral (pH 6.2). It can be explained by the partial substitution of amino groups by guanidine groups existing predominantly in the protonated form in the neutral aqueous solutions. The system thiourea dioxide-hydrogen peroxide was used for the oxidative modification of chitosan. It is shown that thiourea dioxide and hydrogen peroxide separately do not oxidize chitosan but in the presence of their mixture the formation of carboxylic groups in chitosan has been observed. The quantity of carboxylic groups in the modified and native chitosan has been determined by the titration with sodium hydroxide. The presence of carboxylic groups has been proved also using IR spectroscopy. It is shown that the quantity of carboxylic groups increases with the increase of the ratio [TDO]/[chitosan].


Author(s):  
K. J. Böhm ◽  
a. E. Unger

During the last years it was shown that also by means of cryo-ultra-microtomy a good preservation of substructural details of biological material was possible. However the specimen generally was prefixed in these cases with aldehydes.Preparing ultrathin frozen sections of chemically non-prefixed material commonly was linked up to considerable technical and manual expense and the results were not always satisfying. Furthermore, it seems to be impossible to carry out cytochemical investigations by means of treating sections of unfixed biological material with aqueous solutions.We therefore tried to overcome these difficulties by preparing yeast cells (S. cerevisiae) in the following manner:


Author(s):  
S.A.C. Gould ◽  
B. Drake ◽  
C.B. Prater ◽  
A.L. Weisenhorn ◽  
S.M. Lindsay ◽  
...  

The atomic force microscope (AFM) is an instrument that can be used to image many samples of interest in biology and medicine. Images of polymerized amino acids, polyalanine and polyphenylalanine demonstrate the potential of the AFM for revealing the structure of molecules. Images of the protein fibrinogen which agree with TEM images demonstrate that the AFM can provide topographical data on larger molecules. Finally, images of DNA suggest the AFM may soon provide an easier and faster technique for DNA sequencing.The AFM consists of a microfabricated SiO2 triangular shaped cantilever with a diamond tip affixed at the elbow to act as a probe. The sample is mounted on a electronically driven piezoelectric crystal. It is then placed in contact with the tip and scanned. The topography of the surface causes minute deflections in the 100 μm long cantilever which are detected using an optical lever.


Sign in / Sign up

Export Citation Format

Share Document