The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices

Author(s):  
Nima Ahmadkhani ◽  
Mahshid Hosseini ◽  
Maryam Saadatmand ◽  
Alireza Abbaspourrad
Author(s):  
Mai M. Said ◽  
Ramesh K. Nayak ◽  
Randall E. McCoy

Burgos and Wislocki described changes in the mucosa of the guinea pig uterus, cervix and vagina during the estrous cycle investigated by transmission electron microscopy. More recently, Moghissi and Reame reported the effects of progestational agents on the human female reproductive tract. They found drooping and shortening of cilia in norgestrel and norethindrone- treated endometria. To the best of our knowledge, no studies concerning the effects of mestranol and norethindrone given concurrently on the three-dimensional surface features on the uterine mucosa of the guinea pig have been reported. The purpose of this study was to determine the effect of mestranol and norethindrone on surface ultrastructure of guinea pig uterus by SEM.Seventy eight animals were used in this study. They were allocated into two groups. Group 1 (20 animals) was injected intramuscularly 0.1 ml vegetable oil and served as controls.


Author(s):  
R.P. Apkarian ◽  
J.S. Sanfilippo

The synthetic androgen danazol, is an isoxazol derivative of ethisterone. It is utilized in the treatment of endometriosis, fibrocystic breast disease, and has a potential use as a contraceptive. A study was designed to evaluate the ultrastructural changes associated with danazol therapy in a rat model. The preliminary investigation of the distal segment of the rat uterine horn was undertaken as part of a larger study intended to elucidate the effects of danazol on the female reproductive tract.Cross-sections (2-3 mm in length) of the distal segment of the uterine horn from sixteen Sprague-Dawley rats were prepared for SEM. Ten rats in estrus served as controls and six danazol treated rats were noted to have alterations of the estrus cycle i.e. a lag in cycle phase or noncycling patterns. Specimens were fixed in 3% glutaraldehyde in 0.05M phosphate buffer containing CaCl2 at pH 7.0-7.4 and chilled to 4°C. After a brief wash in distilled water, specimens were passed through a graded series of ethanol, critical point dryed in CO2 from absolute ethanol, and coated with 6nm Au. Observations were made with an IS1-40 SEM operated at 15kV.


Author(s):  
Lawrence M. Roth

The female reproductive tract may be the site of a wide variety of benign and malignant tumors, as well as non-neoplastic tumor-like conditions, most of which can be diagnosed by light microscopic examination including special stains and more recently immunoperoxidase techniques. Nevertheless there are situations where ultrastructural examination can contribute substantially to an accurate and specific diagnosis. It is my opinion that electron microscopy can be of greatest benefit and is most cost effective when applied in conjunction with other methodologies. Thus, I have developed an approach which has proved useful for me and may have benefit for others. In cases where it is deemed of potential value, glutaraldehyde-fixed material is obtained at the time of frozen section or otherwise at operation. Coordination with the gynecologic oncologist is required in the latter situation. This material is processed and blocked and is available if a future need arises.


1966 ◽  
Vol 25 (2) ◽  
pp. 406-409 ◽  
Author(s):  
G. A. Schul ◽  
C. W. Foley ◽  
C. D. Heinze ◽  
R. E. Erb ◽  
R. B. Harrington

2021 ◽  
Vol 99 (4) ◽  
pp. 531-553 ◽  
Author(s):  
Cindrilla Chumduri ◽  
Margherita Y. Turco

AbstractHealthy functioning of the female reproductive tract (FRT) depends on balanced and dynamic regulation by hormones during the menstrual cycle, pregnancy and childbirth. The mucosal epithelial lining of different regions of the FRT—ovaries, fallopian tubes, uterus, cervix and vagina—facilitates the selective transport of gametes and successful transfer of the zygote to the uterus where it implants and pregnancy takes place. It also prevents pathogen entry. Recent developments in three-dimensional (3D) organoid systems from the FRT now provide crucial experimental models that recapitulate the cellular heterogeneity and physiological, anatomical and functional properties of the organ in vitro. In this review, we summarise the state of the art on organoids generated from different regions of the FRT. We discuss the potential applications of these powerful in vitro models to study normal physiology, fertility, infections, diseases, drug discovery and personalised medicine.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 113-114
Author(s):  
David J Miller

Abstract Because mating is not always synchronized with ovulation, females from many species store sperm in the female reproductive tract until ovulation and fertilization. This may be done for short periods, a day or two for swine and cattle, or longer periods. Other mammals, such as some species of bats, store sperm for several months. Chickens and turkeys store sperm for 2–4 weeks and queens of some species of insects store sperm for over a decade in specialized structures. How sperm are retained, kept fertile for varying times and released is unclear. We have identified two specific carbohydrate motifs that are abundant in the porcine oviduct that bind and retain sperm in the isthmus. When immobilized, these two glycans lengthen sperm lifespan and suppress the normal increase in intracellular Ca2+ that normally accompanies capacitation. Porcine sperm can be released from oviduct cells and immobilized glycans by progesterone, perhaps of ovarian or cumulus-oocyte complex origin, which activates CatSper, a sperm-specific Ca2+ channel. Progesterone, as well as other compounds that stimulate hyperactivated motility, trigger sperm release, suggesting that hyperactivated motility is sufficient to release porcine sperm from oviduct glycans. We also have found that blocking proteasome-induced sperm protein lysis diminishes the number of sperm released from oviduct glycans. Finally, a transcriptomic approach has identified several groups of genes that are differentially regulated in both bovine and porcine oviducts from estrus animals that are storing sperm compared to oviducts from diestrus animals. This provides clues about how sperm lifespan is extended during storage.


Sign in / Sign up

Export Citation Format

Share Document