Growth and thermal annealing of amorphous germanium carbide obtained by X-ray chemical vapor deposition

2013 ◽  
Vol 48 (18) ◽  
pp. 6357-6366 ◽  
Author(s):  
C. Demaria ◽  
P. Benzi ◽  
A. Arrais ◽  
E. Bottizzo ◽  
P. Antoniotti ◽  
...  
2008 ◽  
Vol 23 (5) ◽  
pp. 1320-1326 ◽  
Author(s):  
Seongho Jeon ◽  
Kijung Yong

A simple thermal annealing was performed to prepare tungsten oxide nanorods directly from tungsten (W) film. The W film was deposited on Si(100) substrate by chemical vapor deposition (CVD) at 450 °C using W(CO)6. A high density of tungsten oxide nanorods was produced by heating of the W film at 600–700 °C. The morphology, structure, composition, and chemical binding states of the prepared nanorods were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) analysis. XRD and TEM results showed that the grown nanorods were single-crystalline W18O49. According to XPS analysis, the W18O49 nanorods contained ∼55.69% W6+, ∼32.28% W5+, and ∼12.03% W4+. The growth mechanism based on thermodynamics is discussed for the growth of tungsten oxide nanorods from W film.


2003 ◽  
Vol 766 ◽  
Author(s):  
Raymond N. Vrtis ◽  
Mark L. O'Neill ◽  
Jean L. Vincent ◽  
Aaron S. Lukas ◽  
Brian K. Peterson ◽  
...  

AbstractWe report on our work to develop a process for depositing nanoporous organosilicate (OSG) films via plasma enhanced chemical vapor deposition (PECVD). This approach entails codepositing an OSG material with a plasma polymerizable hydrocarbon, followed by thermal annealing of the material to remove the porogen, leaving an OSG matrix with nano-sized voids. The dielectric constant of the final film is controlled by varying the ratio of porogen precursor to OSG precursor in the delivery gas. Because of the need to maintain the mechanical strength of the final material, diethoxymethylsilane (DEMS) is utilized as the OSG precursor. Utilizing this route we are able to deposit films with a dielectric constant of 2.55 to 2.20 and hardness of 0.7 to 0.3 GPa, respectively.


1992 ◽  
Vol 72 (7) ◽  
pp. 3110-3115 ◽  
Author(s):  
A. Jean ◽  
M. Chaker ◽  
Y. Diawara ◽  
P. K. Leung ◽  
E. Gat ◽  
...  

2003 ◽  
Vol 372 (3-4) ◽  
pp. 320-324 ◽  
Author(s):  
Y.H Tang ◽  
X.T Zhou ◽  
Y.F Hu ◽  
C.S Lee ◽  
S.T Lee ◽  
...  

1995 ◽  
Vol 403 ◽  
Author(s):  
J. J. Pedroviejo ◽  
B. Garrido ◽  
J. C. Ferrer ◽  
A. Cornet ◽  
E. Scheid ◽  
...  

AbstractConventional and Rapid Thermal Annealing of Semi-Insulating Polycrystalline Silicon layers obtained by Low Pressure Chemical Vapor Deposition (LPCVD) from disilane Si2H6 have been performed in order to determine the structural modifications induced on the layers by these thermal treatments. The study of these modifications has been carried out by several analysis methods like FTIR, XPS, TEM, RAMAN and ellipsometry. The results obtained are presented, contrasted and discussed in this work.


1990 ◽  
Vol 209 ◽  
Author(s):  
Yoshihisa Fujisaki ◽  
Sumiko Sakai ◽  
Saburo Ataka ◽  
Kenji Shibata

ABSTRACTHigh quality GaAs/SiO2 MIS( Metal Insulator Semiconductor ) diodes were fabricated using (NH4)2S treatment and photo-assisted CVD( Chemical Vapor Deposition ). The density of states at the GaAs and SiO2 interface is the order of 1011 cm-2eV-1 throughout the forbidden energy range, which is smaller by the order of two than that of the MIS devices made by the conventional CVD process. The mechanism attributable to the interface improvement was investigated through XPS( X-ray Photoelectron Spectroscopy ) analyses.


Sign in / Sign up

Export Citation Format

Share Document