Porous g-C3N4 nanosheets through facile thermal polymerization of melamine in the air for photocatalyst application

Author(s):  
Pezhman Molaei ◽  
Fereshteh Rahimi-Moghadam
1990 ◽  
Vol 55 (8) ◽  
pp. 2001-2007
Author(s):  
Gurusamy Manivannan ◽  
Pichai Maruthamuthu

Aqueous thermal polymerization of acrylonitrile (AN) initiated by peroxomonosulphate (HSO5-, PMS)-thiolactic acid (TLA) and PMS-thiomalic acid (TMA) redox systems has been carried out in the temperature range 30-50 °C. The effect of concentration of monomer, initiator, reducing agent, H+, and ionic strength on rate of polymerization, Rp, has been investigated under deaerated conditions. The Rp has been found to depend on, Rp ~ [AN]01.5 [PMS]0.5 [TLA]0.5 in PMS-TLA system and, Rp ~ [AN]02.0 [PMS]1.0 [TMA]0 in PMS-TMA system. The degree of polymerization (Xn) values and thermodynamic parameters have been evaluated. Suitable reaction scheme has been proposed and expressions for Rp and Xn have been obtained.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3948
Author(s):  
Lingfang Qiu ◽  
Zhiwei Zhou ◽  
Mengfan Ma ◽  
Ping Li ◽  
Jinyong Lu ◽  
...  

Novel visible-light responded aluminosilicophosphate-5 (SAPO-5)/g-C3N4 composite has been easily constructed by thermal polymerization for the mixture of SAPO-5, NH4Cl, and dicyandiamide. The photocatalytic activity of SAPO-5/g-C3N4 is evaluated by degrading RhB (30 mg/L) under visible light illumination (λ > 420 nm). The effects of SAPO-5 incorporation proportion and initial RhB concentration on the photocatalytic performance have been discussed in detail. The optimized SAPO-5/g-C3N4 composite shows promising degradation efficiency which is 40.6% higher than that of pure g-C3N4. The degradation rate improves from 0.007 min−1 to 0.022 min−1, which is a comparable photocatalytic performance compared with other g-C3N4-based heterojunctions for dye degradation. The migration of photo-induced electrons from g-C3N4 to the Al site of SAPO-5 should promote the photo-induced electron-hole pairs separation rate of g-C3N4 efficiently. Furthermore, the redox reactions for RhB degradation occur on the photo-induced holes in the g-C3N4 and Al sites in SAPO-5, respectively. This achievement not only improves the photocatalytic activity of g-C3N4 efficiently, but also broadens the application of SAPOs in the photocatalytic field.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tomoki Ogoshi ◽  
Yuma Sakatsume ◽  
Katsuto Onishi ◽  
Rui Tang ◽  
Kazuma Takahashi ◽  
...  

AbstractCarbon materials with controlled pore sizes at the nanometer level have been obtained by template methods, chemical vapor desorption, and extraction of metals from carbides. However, to produce porous carbons with controlled pore sizes at the Ångstrom-level, syntheses that are simple, versatile, and reproducible are desired. Here, we report a synthetic method to prepare porous carbon materials with pore sizes that can be precisely controlled at the Ångstrom-level. Heating first induces thermal polymerization of selected three-dimensional aromatic molecules as the carbon sources, further heating results in extremely high carbonization yields (>86%). The porous carbon obtained from a tetrabiphenylmethane structure has a larger pore size (4.40 Å) than those from a spirobifluorene (4.07 Å) or a tetraphenylmethane precursor (4.05 Å). The porous carbon obtained from tetraphenylmethane is applied as an anode material for sodium-ion battery.


1987 ◽  
Vol 33 (6) ◽  
pp. 1949-1953
Author(s):  
V. N. Ionov ◽  
V. V. Kashin ◽  
V. N. Perminova ◽  
S. Ya. Rusanov ◽  
V. K. Sysoev

2012 ◽  
Vol 557-559 ◽  
pp. 1152-1156
Author(s):  
Yan Zhou ◽  
Fu Wei Huang ◽  
Fa Rong Huang ◽  
Lei Du

Modified silicon-containing arylacetylene resins (DMSEPE-OMPS) were prepared from poly(dimethylsilyleneethynylenephenyleneethynylene) (DMSEPE) and Octa(maleimidophenyl)- silsesquioxane (OMPS). The curing reaction of DMSEPE-OMPS resin was studied by FT-IR and DSC techniques. Thermal stability and dielectric properties of cured DMSEPE-OMPS resins were determined. FT-IR and DSC analyses indicate that thermal polymerization of DMSEPE-OMPS resin occurs in the curing process. Thermal stabilities of cured DMSEPE-OMPS resins under N2 and air atmosphere decrease gradually with the increment of OMPS components. The incorporation of OMPS can obviously reduce dielectric constant of DMSEPE-OMPS resins.


Sign in / Sign up

Export Citation Format

Share Document