scholarly journals Exploring the folding energy landscapes of heme proteins using a hybrid AWSEM-heme model

Author(s):  
Xun Chen ◽  
Wei Lu ◽  
Min-Yeh Tsai ◽  
Shikai Jin ◽  
Peter G. Wolynes

AbstractHeme is an active center in many proteins. Here we explore computationally the role of heme in protein folding and protein structure. We model heme proteins using a hybrid model employing the AWSEM Hamiltonian, a coarse-grained forcefield for the protein chain along with AMBER, an all-atom forcefield for the heme. We carefully designed transferable force fields that model the interactions between the protein and the heme. The types of protein–ligand interactions in the hybrid model include thioester covalent bonds, coordinated covalent bonds, hydrogen bonds, and electrostatics. We explore the influence of different types of hemes (heme b and heme c) on folding and structure prediction. Including both types of heme improves the quality of protein structure predictions. The free energy landscape shows that both types of heme can act as nucleation sites for protein folding and stabilize the protein folded state. In binding the heme, coordinated covalent bonds and thioester covalent bonds for heme c drive the heme toward the native pocket. The electrostatics also facilitates the search for the binding site.

2012 ◽  
Vol 68 (11) ◽  
pp. 1522-1534 ◽  
Author(s):  
Rojan Shrestha ◽  
David Simoncini ◽  
Kam Y. J. Zhang

Recent advancements in computational methods for protein-structure prediction have made it possible to generate the high-qualityde novomodels required forab initiophasing of crystallographic diffraction data using molecular replacement. Despite those encouraging achievements inab initiophasing usingde novomodels, its success is limited only to those targets for which high-qualityde novomodels can be generated. In order to increase the scope of targets to whichab initiophasing withde novomodels can be successfully applied, it is necessary to reduce the errors in thede novomodels that are used as templates for molecular replacement. Here, an approach is introduced that can identify and rebuild the residues with larger errors, which subsequently reduces the overall Cαroot-mean-square deviation (CA-RMSD) from the native protein structure. The error in a predicted model is estimated from the average pairwise geometric distance per residue computed among selected lowest energy coarse-grained models. This score is subsequently employed to guide a rebuilding process that focuses on more error-prone residues in the coarse-grained models. This rebuilding methodology has been tested on ten protein targets that were unsuccessful using previous methods. The average CA-RMSD of the coarse-grained models was improved from 4.93 to 4.06 Å. For those models with CA-RMSD less than 3.0 Å, the average CA-RMSD was improved from 3.38 to 2.60 Å. These rebuilt coarse-grained models were then converted into all-atom models and refined to produce improvedde novomodels for molecular replacement. Seven diffraction data sets were successfully phased using rebuiltde novomodels, indicating the improved quality of these rebuiltde novomodels and the effectiveness of the rebuilding process. Software implementing this method, calledMORPHEUS, can be downloaded from http://www.riken.jp/zhangiru/software.html.


2020 ◽  
Author(s):  
Rahmatullah Roche ◽  
Sutanu Bhattacharya ◽  
Debswapna Bhattacharya

AbstractCrystallography and NMR system (CNS) is currently the de facto standard for fragment-free ab initio protein folding from inter-residue distance or contact maps. Despite its widespread use in protein structure prediction, CNS is a decade-old macromolecular structure determination system that was originally developed for solving macromolecular geometry from experimental restraints as opposed to predictive modeling driven by interaction map data. As such, the adaptation of the CNS experimental structure determination protocol for ab initio protein folding is intrinsically anomalous that may undermine the folding accuracy of computational protein structure prediction. In this paper, we propose a new CNS-free hierarchical structure modeling method called DConStruct for folding both soluble and membrane proteins driven by distance and contact information. Rigorous experimental validation shows that DConStruct attains much better reconstruction accuracy than CNS when tested with the same input contact map at varying contact thresholds. The hierarchical modeling with iterative self-correction employed in DConStruct scales at a much higher degree of folding accuracy than CNS with the increase in contact thresholds, ultimately approaching near-optimal reconstruction accuracy at higher-thresholded contact maps. The folding accuracy of DConStruct can be further improved by exploiting distance-based hybrid interaction maps at tri-level thresholding, as demonstrated by the better performance of our method in folding difficult free modeling targets from the 12th and 13th rounds of the Critical Assessment of techniques for protein Structure Prediction (CASP) experiments compared to several popular CNS- and fragment-based approaches, some of which even using much finer-grained distance maps than ours. Additional large-scale benchmarking shows that DConStruct can significantly improve the folding accuracy of membrane proteins compared to a CNS-based approach. These results collectively demonstrate the feasibility of greatly improving the accuracy of ab initio protein folding by optimally exploiting the information encoded in inter-residue interaction maps beyond what is possible by CNS.Author summaryPredicting the folded and functional 3-dimensional structure of a protein molecule from its amino acid sequence is of central importance to structural biology. Recently, promising advances have been made in ab initio protein folding due to the reasonably accurate estimation of inter-residue interaction maps at increasingly higher resolutions that range from binary contacts to finer-grained distances. Despite the progress in predicting the interaction maps, approaches for turning the residue-residue interactions projected in these maps into their precise spatial positioning heavily rely on a decade-old experimental structure determination protocol that is not suitable for predictive modeling. This paper presents a new hierarchical structure modeling method, DConStruct, which can better exploit the information encoded in the interaction maps at multiple granularities, from binary contact maps to distance-based hybrid maps at tri-level thresholding, for improved ab initio folding. Multiple large-scale benchmarking experiments show that our proposed method can substantially improve the folding accuracy for both soluble and membrane proteins compared to state-of-the-art approaches. DConStruct is licensed under the GNU General Public License v3 and freely available at https://github.com/Bhattacharya-Lab/DConStruct.


Author(s):  
Daniel Varela ◽  
José Santos

AbstractProtein folding is the dynamic process by which a protein folds into its final native structure. This is different to the traditional problem of the prediction of the final protein structure, since it requires a modeling of how protein components interact over time to obtain the final folded structure. In this study we test whether a model of the folding process can be obtained exclusively through machine learning. To this end, protein folding is considered as an emergent process and the cellular automata tool is used to model the folding process. A neural cellular automaton is defined, using a connectionist model that acts as a cellular automaton through the protein chain to define the dynamic folding. Differential evolution is used to automatically obtain the optimized neural cellular automata that provide protein folding. We tested the methods with the Rosetta coarse-grained atomic model of protein representation, using different proteins to analyze the modeling of folding and the structure refinement that the modeling can provide, showing the potential advantages that such methods offer, but also difficulties that arise.


2005 ◽  
Vol 03 (04) ◽  
pp. 837-860 ◽  
Author(s):  
TIANSHOU ZHOU ◽  
LUONAN CHEN ◽  
YUN TANG ◽  
XIANGSUN ZHANG

Protein structure alignment plays a key role in protein structure prediction and fold family classification. An efficient method for multiple protein structure alignment in a mathematical manner is presented, based on deterministic annealing technique. The alignment problem is mapped onto a nonlinear continuous optimization problem (NCOP) with common consensus chain, matching assignment matrices and atomic coordinates as variables. At each step in the annealing procedure, the NCOP is decomposed into as many subproblems as the number of protein chains, each of which is actually an independent pairwise structure alignment between a protein chain and the consensus chain and hence can be efficiently solved by the parallel computation technique. The proposed method is robust with respect to choice of iteration parameters for a wide range of proteins, and performs well in both multiple and pairwise structure alignment cases, compared with existing alignment methods.


2012 ◽  
Vol 116 (29) ◽  
pp. 8494-8503 ◽  
Author(s):  
Aram Davtyan ◽  
Nicholas P. Schafer ◽  
Weihua Zheng ◽  
Cecilia Clementi ◽  
Peter G. Wolynes ◽  
...  

2014 ◽  
Vol 42 (2) ◽  
pp. 225-229 ◽  
Author(s):  
David Baker

I describe how experimental studies of protein folding have led to advances in protein structure prediction and protein design. I describe the finding that protein sequences are not optimized for rapid folding, the contact order–protein folding rate correlation, the incorporation of experimental insights into protein folding into the Rosetta protein structure production methodology and the use of this methodology to determine structures from sparse experimental data. I then describe the inverse problem (protein design) and give an overview of recent work on designing proteins with new structures and functions. I also describe the contributions of the general public to these efforts through the Rosetta@home distributed computing project and the FoldIt interactive protein folding and design game.


Sign in / Sign up

Export Citation Format

Share Document