Enhancement of biofilm formation and microalgae growth by preparing cellulose film with rough surface

2022 ◽  
Vol 29 (2) ◽  
Author(s):  
Caixiang Chen ◽  
Shumei Wen ◽  
Zhihui Wang ◽  
Dongmei Zhang ◽  
Jinming Zhang ◽  
...  
Author(s):  
B.D. Tall ◽  
K.S. George ◽  
R. T. Gray ◽  
H.N. Williams

Studies of bacterial behavior in many environments have shown that most organisms attach to surfaces, forming communities of microcolonies called biofilms. In contaminated medical devices, biofilms may serve both as reservoirs and as inocula for the initiation of infections. Recently, there has been much concern about the potential of dental units to transmit infections. Because the mechanisms of biofilm formation are ill-defined, we investigated the behavior and formation of a biofilm associated with tubing leading to the water syringe of a dental unit over a period of 1 month.


1997 ◽  
Vol 51 (2-3) ◽  
pp. 119-132
Author(s):  
V. F. Naumenko ◽  
Leonid Aleksandrovich Pazynin ◽  
A. S. Bryukhovetsky

2005 ◽  
Vol 64 (10) ◽  
pp. 819-831
Author(s):  
F.G. Bass ◽  
D. V. Mikhaylova ◽  
V. Prosentsov ◽  
L. Resnick

2016 ◽  
Vol 44 (3) ◽  
pp. 150-173 ◽  
Author(s):  
Mehran Motamedi ◽  
Saied Taheri ◽  
Corina Sandu

ABSTRACT For tire designers, rubber friction is a topic of pronounced practical importance. Thus, development of a rubber–road contact model is of great interest. In this research, to predict the effectiveness of the tread compound in a tire as it interacts with the pavement, the physics-based multiscale rubber-friction theories developed by B. Persson and M. Klüppel were studied. The strengths of each method were identified and incorporated into a consolidated model that is more comprehensive and proficient than any single, existing, physics-based approach. In the present work, the friction coefficient was estimated for a summer tire tread compound sliding on sandpaper. The inputs to the model were the fractal properties of the rough surface and the dynamic viscoelastic modulus of rubber. The sandpaper-surface profile was measured accurately using an optical profilometer. Two-dimensional parameterization was performed using one-dimensional profile measurements. The tire tread compound was characterized via dynamic mechanical analysis. To validate the friction model, a laboratory-based, rubber-friction test that could measure the friction between a rubber sample and any arbitrary rough surface was designed and built. The apparatus consisted of a turntable, which can have the surface characteristics of choice, and a rubber wheel in contact with the turntable. The wheel speed, as well as the turntable speed, could be controlled precisely to generate the arbitrary values of longitudinal slip at which the dynamic coefficient of friction was measured. The correlation between the simulation and the experimental results was investigated.


Sign in / Sign up

Export Citation Format

Share Document