Spectral Order Automorphisms of the Spaces of Hilbert Space Effects and Observables

2007 ◽  
Vol 80 (3) ◽  
pp. 239-255 ◽  
Author(s):  
Lajos Molnár ◽  
Peter Šemrl
2006 ◽  
Vol 47 (10) ◽  
pp. 102103 ◽  
Author(s):  
Li Yuan ◽  
Hong-Ke Du

2004 ◽  
Vol 54 (2) ◽  
pp. 201-209 ◽  
Author(s):  
Endre Kovács ◽  
Lajos Molnár

1999 ◽  
Vol 286 (1-3) ◽  
pp. 1-17 ◽  
Author(s):  
T. Moreland ◽  
S. Gudder

2003 ◽  
Vol 370 ◽  
pp. 287-300 ◽  
Author(s):  
Lajos Molnár

2006 ◽  
Vol 49 (4) ◽  
pp. 545-556 ◽  
Author(s):  
Hongke Du ◽  
Chunyuan Deng ◽  
Qihui Li

2010 ◽  
Vol 60 (5) ◽  
Author(s):  
David Foulis

AbstractA synaptic algebra is both a special Jordan algebra and a spectral order-unit normed space satisfying certain natural conditions suggested by the partially ordered Jordan algebra of bounded Hermitian operators on a Hilbert space. The adjective “synaptic”, borrowed from biology, is meant to suggest that such an algebra coherently “ties together” the notions of a Jordan algebra, a spectral order-unit normed space, a convex effect algebra, and an orthomodular lattice.


Sign in / Sign up

Export Citation Format

Share Document