A kinetic scheme to examine the role of glial cells in the pathogenesis of Alzheimer’s disease

Author(s):  
R. A. Thuraisingham
Biomolecules ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 93 ◽  
Author(s):  
Saif Nirzhor ◽  
Rubayat Khan ◽  
Sharmind Neelotpol

Even though Alzheimer’s disease (AD) is of significant interest to the scientific community, its pathogenesis is very complicated and not well-understood. A great deal of progress has been made in AD research recently and with the advent of these new insights more therapeutic benefits may be identified that could help patients around the world. Much of the research in AD thus far has been very neuron-oriented; however, recent studies suggest that glial cells, i.e., microglia, astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells (NG2 glia), are linked to the pathogenesis of AD and may offer several potential therapeutic targets against AD. In addition to a number of other functions, glial cells are responsible for maintaining homeostasis (i.e., concentration of ions, neurotransmitters, etc.) within the central nervous system (CNS) and are crucial to the structural integrity of neurons. This review explores the: (i) role of glial cells in AD pathogenesis; (ii) complex functionalities of the components involved; and (iii) potential therapeutic targets that could eventually lead to a better quality of life for AD patients.


2016 ◽  
Vol 13 (1) ◽  
Author(s):  
David Heras-Sandoval ◽  
José Pedraza-Chaverri ◽  
Jazmin M. Pérez-Rojas

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Celia Luchena ◽  
Jone Zuazo-Ibarra ◽  
Elena Alberdi ◽  
Carlos Matute ◽  
Estibaliz Capetillo-Zarate

Synapse loss is an early manifestation of pathology in Alzheimer’s disease (AD) and is currently the best correlate to cognitive decline. Microglial cells are involved in synapse pruning during development via the complement pathway. Moreover, recent evidence points towards a key role played by glial cells in synapse loss during AD. However, further contribution of glial cells and the role of neurons to synapse pathology in AD remain not well understood. This review is aimed at comprehensively reporting the source and/or cellular localization in the CNS—in microglia, astrocytes, or neurons—of the triggering components (C1q, C3) of the classical complement pathway involved in synapse pruning in development, adulthood, and AD.


2011 ◽  
Vol 44 (06) ◽  
Author(s):  
K Lerche ◽  
M Willem ◽  
K Kleinknecht ◽  
C Romberg ◽  
U Konietzko ◽  
...  

2020 ◽  
Vol 3 (2) ◽  
pp. 216-242 ◽  
Author(s):  
Mayuri Shukla ◽  
Areechun Sotthibundhu ◽  
Piyarat Govitrapong

The revelation of adult brain exhibiting neurogenesis has established that the brain possesses great plasticity and that neurons could be spawned in the neurogenic zones where hippocampal adult neurogenesis attributes to learning and memory processes. With strong implications in brain functional homeostasis, aging and cognition, various aspects of adult neurogenesis reveal exuberant mechanistic associations thereby further aiding in facilitating the therapeutic approaches regarding the development of neurodegenerative processes in Alzheimer’s Disease (AD). Impaired neurogenesis has been significantly evident in AD with compromised hippocampal function and cognitive deficits. Melatonin the pineal indolamine augments neurogenesis and has been linked to AD development as its levels are compromised with disease progression. Here, in this review, we discuss and appraise the mechanisms via which melatonin regulates neurogenesis in pathophysiological conditions which would unravel the molecular basis in such conditions and its role in endogenous brain repair. Also, its components as key regulators of neural stem and progenitor cell proliferation and differentiation in the embryonic and adult brain would aid in accentuating the therapeutic implications of this indoleamine in line of prevention and treatment of AD.   


Sign in / Sign up

Export Citation Format

Share Document