Weakly Supervised Segmentation Loss Based on Graph Cuts and Superpixel Algorithm

Author(s):  
Mingchun Li ◽  
Dali Chen ◽  
Shixin Liu
Author(s):  
Zaid Al-Huda ◽  
Donghai Zhai ◽  
Yan Yang ◽  
Riyadh Nazar Ali Algburi

Deep convolutional neural networks (DCNNs) trained on the pixel-level annotated images have achieved improvements in semantic segmentation. Due to the high cost of labeling training data, their applications may have great limitation. However, weakly supervised segmentation approaches can significantly reduce human labeling efforts. In this paper, we introduce a new framework to generate high-quality initial pixel-level annotations. By using a hierarchical image segmentation algorithm to predict the boundary map, we select the optimal scale of high-quality hierarchies. In the initialization step, scribble annotations and the saliency map are combined to construct a graphic model over the optimal scale segmentation. By solving the minimal cut problem, it can spread information from scribbles to unmarked regions. In the training process, the segmentation network is trained by using the initial pixel-level annotations. To iteratively optimize the segmentation, we use a graphical model to refine segmentation masks and retrain the segmentation network to get more precise pixel-level annotations. The experimental results on Pascal VOC 2012 dataset demonstrate that the proposed framework outperforms most of weakly supervised semantic segmentation methods and achieves the state-of-the-art performance, which is [Formula: see text] mIoU.


Author(s):  
Aliasghar Mortazi ◽  
Naji Khosravan ◽  
Drew A. Torigian ◽  
Sila Kurugol ◽  
Ulas Bagci

2021 ◽  
Author(s):  
Xin Huang ◽  
Qianshu Zhu ◽  
Yongtuo Liu ◽  
Shengfeng He

2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Ameneh Boroomand ◽  
Alexander Wong ◽  
Kostadinka Bizheva

<p>Keratocytes are vital for maintaining the overall health of human<br />cornea as they preserve the corneal transparency and help in healing<br />corneal injuries. Manual segmentation of keratocytes is challenging,<br />time consuming and also needs an expert. Here, we propose<br />a novel semi-automatic segmentation framework, called Conditional<br />Random FieldWeakly Supervised Segmentation (CRF-WSS)<br />to perform the keratocytes cell segmentation. The proposed framework<br />exploits the concept of dictionary learning in a sparse model<br />along with the Conditional Random Field (CRF) modeling to segment<br />keratocytes cells in Ultra High Resolution Optical Coherence<br />Tomography (UHR-OCT) images of human cornea. The results<br />show higher accuracy for the proposed CRF-WSS framework compare<br />to the other tested Supervised Segmentation (SS) andWeakly<br />Supervised Segmentation (WSS) methods.</p>


2022 ◽  
Vol 122 ◽  
pp. 108341
Author(s):  
Xiaoming Liu ◽  
Quan Yuan ◽  
Yaozong Gao ◽  
Kelei He ◽  
Shuo Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document