Assessing the real costs of natural hazard-induced disasters: A case study from Australia’s Northern Territory

2021 ◽  
Author(s):  
Kamaljit K. Sangha ◽  
Jeremy Russell-Smith ◽  
Andrew C. Edwards ◽  
Akhilesh Surjan
Author(s):  
Kuo Hsiung Chen ◽  
Wen Sheng Wu ◽  
Yu Hsiang Shu ◽  
Jian Chan Lin

Abstract IR-OBIRCH (Infrared Ray – Optical Beam Induced Resistance Change) is one of the main failure analysis techniques [1] [2] [3] [4]. It is a useful tool to do fault localization on leakage failure cases such as poor Via or contact connection, FEoL or BEoL pattern bridge, and etc. But the real failure sites associated with the above failure mechanisms are not always found at the OBIRCH spot locations. Sometimes the real failure site is far away from the OBIRCH spot and it will result in inconclusive PFA Analysis. Finding the real failure site is what matters the most for fault localization detection. In this paper, we will introduce one case using deep sub-micron process generation which suffers serious high Isb current at wafer donut region. In this case study a BEoL Via poor connection is found far away from the OBIRCH spots. This implies that layout tracing skill and relation investigation among OBIRCH spots are needed for successful failure analysis.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 75
Author(s):  
Dario Carrea ◽  
Antonio Abellan ◽  
Marc-Henri Derron ◽  
Neal Gauvin ◽  
Michel Jaboyedoff

The use of 3D point clouds to improve the understanding of natural phenomena is currently applied in natural hazard investigations, including the quantification of rockfall activity. However, 3D point cloud treatment is typically accomplished using nondedicated (and not optimal) software. To fill this gap, we present an open-source, specific rockfall package in an object-oriented toolbox developed in the MATLAB® environment. The proposed package offers a complete and semiautomatic 3D solution that spans from extraction to identification and volume estimations of rockfall sources using state-of-the-art methods and newly implemented algorithms. To illustrate the capabilities of this package, we acquired a series of high-quality point clouds in a pilot study area referred to as the La Cornalle cliff (West Switzerland), obtained robust volume estimations at different volumetric scales, and derived rockfall magnitude–frequency distributions, which assisted in the assessment of rockfall activity and long-term erosion rates. An outcome of the case study shows the influence of the volume computation on the magnitude–frequency distribution and ensuing erosion process interpretation.


Author(s):  
Jorge Salgado ◽  
José Ramírez-Álvarez ◽  
Diego Mancheno

AbstractThe 16 April 2016 earthquake in Ecuador exposed the significant weaknesses concerning the methodological designs to compute—from an economic standpoint—the consequences of a natural hazard-related disaster for productive exchanges and the accumulation of capital in Ecuador. This study addressed one of these challenges with an innovative ex ante model to measure the partial and net short-term effects of a natural hazard-related catastrophe from an interregional perspective, with the 16 April 2016 earthquake serving as a case study. In general, the specified and estimated model follows the approach of the extended Miyazawa model, which endogenizes consumption demand in a standard input–output model with the subnational interrelations and resulting multipliers. Due to the country’s limitations in its regional account records the input–output matrices for each province of Ecuador had to be estimated, which then allowed transactions carried out between any two sectors within or outside a given province to be identified by means of the RAS method. The estimations provide evidence that the net short-term impact on the national accounts was not significant, and under some of the simulated scenarios, based on the official information with respect to earthquake management, the impact may even have had a positive effect on the growth of the national product during 2016.


1997 ◽  
Vol 15 (1) ◽  
pp. 73-86 ◽  
Author(s):  
Patrick McHaffie

The current graphical rhetoric of advertising includes everything from images of the globe borrowed from the US space program (for example, Hewlett-Packard Corp. computer systems), to pseudotribal renderings of a very different sort [for example, Minute Maid's (The Coca Cola Co.) Fruitopia]. The use of these images are part of what Goldman calls the economy of ‘commodity signs’, where produced meanings are linked to commodities through the medium of the print or broadcast advertisement. The increased incorporation of global images in Western advertising presents an opportunity to analyze the ideological underpinning of the ‘new global economy’. The sheer volume of purchased advertising space places these often confusing images before our eyes at an increasing pace, producing meanings which tend to obfuscate and fetishize discourse related to globalism. A decoding of specific advertisements with the use of the Hewlett-Packard Corporation as a case study, juxtaposed against the real spatial practices of the company will reveal ruptures, contradictions, and incoherence in advertising messages which appropriate the symbolic power of global images.


2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Antonino Cirello ◽  
Tommaso Ingrassia ◽  
Antonio Mancuso ◽  
Vincenzo Nigrelli ◽  
Davide Tumino

The process of designing a sail can be a challenging task because of the difficulties in predicting the real aerodynamic performance. This is especially true in the case of downwind sails, where the evaluation of the real shapes and aerodynamic forces can be very complex because of turbulent and detached flows and the high-deformable behavior of structures. Of course, numerical methods are very useful and reliable tools to investigate sail performances, and their use, also as a result of the exponential growth of computational resources at a very low cost, is spreading more and more, even in not highly competitive fields. This paper presents a new methodology to support sail designers in evaluating and optimizing downwind sail performance and manufacturing. A new weakly coupled fluid–structure interaction (FSI) procedure has been developed to study downwind sails. The proposed method is parametric and automated and allows for investigating multiple kinds of sails under different sailing conditions. The study of a gennaker of a small sailing yacht is presented as a case study. Based on the numerical results obtained, an analytical formulation for calculating the sail corner loads has been also proposed. The novel proposed methodology could represent a promising approach to allow for the widespread and effective use of numerical methods in the design and manufacturing of yacht sails.


Author(s):  
Ronald Manríquez ◽  
Camilo Guerrero-Nancuante ◽  
Felipe Martínez ◽  
Carla Taramasco

The understanding of infectious diseases is a priority in the field of public health. This has generated the inclusion of several disciplines and tools that allow for analyzing the dissemination of infectious diseases. The aim of this manuscript is to model the spreading of a disease in a population that is registered in a database. From this database, we obtain an edge-weighted graph. The spreading was modeled with the classic SIR model. The model proposed with edge-weighted graph allows for identifying the most important variables in the dissemination of epidemics. Moreover, a deterministic approximation is provided. With database COVID-19 from a city in Chile, we analyzed our model with relationship variables between people. We obtained a graph with 3866 vertices and 6,841,470 edges. We fitted the curve of the real data and we have done some simulations on the obtained graph. Our model is adjusted to the spread of the disease. The model proposed with edge-weighted graph allows for identifying the most important variables in the dissemination of epidemics, in this case with real data of COVID-19. This valuable information allows us to also include/understand the networks of dissemination of epidemics diseases as well as the implementation of preventive measures of public health. These findings are important in COVID-19’s pandemic context.


Author(s):  
Peter M. Steiner ◽  
Christiane Atzmüller ◽  
Dan Su

In survey research, vignette experiments typically employ short, systematically varied descriptions of situations or persons (called vignettes) to elicit the beliefs, attitudes, or behaviors of respondents with respect to the presented scenarios. Using a case study on the fair gender income gap in Austria, we discuss how different design elements can be used to increase a vignette experiment’s validity and reliability. With respect to the experimental design, the design elements considered include a confounded factorial design, a between-subjects factor, anchoring vignettes, and blocking by respondent strata and interviewers. The design elements for the sampling and survey design consist of stratification, covariate measurements, and the systematic assignment of vignette sets to respondents and interviewers. Moreover, the vignettes’ construct validity is empirically validated with respect to the real gender income gap in Austria. We demonstrate how a broad range of design elements can successfully increase a vignette study’s validity and reliability.


Sign in / Sign up

Export Citation Format

Share Document