Construction of single quantum deletion codes via combinatorial conditions and adjacency matrices

2021 ◽  
Vol 20 (9) ◽  
Author(s):  
Taro Shibayama
1997 ◽  
Vol 62 (11) ◽  
pp. 1747-1753 ◽  
Author(s):  
Radek Marek

Determination of 15N chemical shifts and heteronuclear coupling constants of substituted 2,2-dimethylpenta-3,4-dienal hydrazones is presented. The chemical shifts were determined by gradient-enhanced inverse-detected NMR techniques and 1H-15N coupling constants were extracted from phase-sensitive gradient-enhanced single-quantum multiple bond correlation experiments. Stereospecific behaviour of the coupling constants 2J(1H,15N) and 1J(1H,13C) has been used to determine the configuration on a C=N double bond. The above-mentioned compounds exist predominantly as E isomers in deuteriochloroform.


1993 ◽  
Vol 29 (1) ◽  
pp. 98-99 ◽  
Author(s):  
H. Kurakake ◽  
T. Uchida ◽  
H. Soda ◽  
S. Yamazaki

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hwan-Seop Yeo ◽  
Kwanjae Lee ◽  
Young Chul Sim ◽  
Seoung-Hwan Park ◽  
Yong-Hoon Cho

Abstract Optical polarization is an indispensable component in photonic applications, the orthogonality of which extends the degree of freedom of information, and strongly polarized and highly efficient small-size emitters are essential for compact polarization-based devices. We propose a group III-nitride quantum wire for a highly-efficient, strongly-polarized emitter, the polarization anisotropy of which stems solely from its one-dimensionality. We fabricated a site-selective and size-controlled single quantum wire using the geometrical shape of a three-dimensional structure under a self-limited growth mechanism. We present a strong and robust optical polarization anisotropy at room temperature emerging from a group III-nitride single quantum wire. Based on polarization-resolved spectroscopy and strain-included 6-band k·p calculations, the strong anisotropy is mainly attributed to the anisotropic strain distribution caused by the one-dimensionality, and its robustness to temperature is associated with an asymmetric quantum confinement effect.


2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Sho Kubota ◽  
Etsuo Segawa ◽  
Tetsuji Taniguchi

1988 ◽  
Vol 10 (10) ◽  
pp. 1243-1248 ◽  
Author(s):  
Y. Chen ◽  
A. Hameury ◽  
J. Massies ◽  
C. Neri

Sign in / Sign up

Export Citation Format

Share Document