Design and characterization of [(Et)3 N-H]FeCl4 as a nanomagnetic ionic liquid catalyst for the synthesis of xanthene derivatives under solvent-free conditions

Author(s):  
Ali Ezabadi ◽  
Masoumeh Salami
2018 ◽  
Vol 21 (7) ◽  
pp. 526-532 ◽  
Author(s):  
Zahra Abdi Piralghar ◽  
Mohammad Mahmoodi Hashemi ◽  
Ali Ezabadi

Aim and Objective: In this work, we synthesized and characterized a novel Brönsted acidic ionic liquid from the reaction of N, N, N’, N’-tetramethylethylenediamine with chlorosulfonic acid and explored its catalytic activity in 1, 8-dioxo-octahydroxanthenes synthesis. Materials and Methods: Dimedone, aryl aldehydes, and the ionic liquid as the catalyst were reacted under solvent-free conditions. The progressive of the reaction was monitored by a thin layer of chromatography (ethyl acetate/n-hexane = 1/5). All products were characterized as the basis of their spectra data and melting point by comparison with those reported in the literature. Results: The prepared ionic liquid was successfully applied in the synthesis of 1, 8-dioxooctahydroxanthenes in good to high yields on the reaction of aryl aldehyde and dimedone at 120oC under solvent-free conditions. Conclusion: This research demonstrates that the catalyst is impressive for 1, 8-dioxo-octahydroxanthenes synthesis under solvent-free conditions.


RSC Advances ◽  
2015 ◽  
Vol 5 (83) ◽  
pp. 67405-67411 ◽  
Author(s):  
Mohsen Abbasi

In the present work, 1,3-disulfonic acid benzimidazolium chloride as a new ionic liquid, is synthesized, and characterized by studying its FT-IR, 1H NMR, 13C NMR as well as mass spectra.


2018 ◽  
Vol 21 (8) ◽  
pp. 602-608 ◽  
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Aim and Objective: In the present work, 1, 1’-sulfinyldiethylammonium bis (hydrogen sulfate) as a novel room temperature dicationic ionic liquid was synthesized and used as a catalyst for xanthenediones synthesis. Material and Method: The dicationic ionic liquid has been synthesized using ethylamine and thionyl chloride as precursors. Then, by the reaction of [(EtNH2)2SO]Cl2 with H2SO4, [(EtNH2)2SO][HSO4]2 was prepared and after that, it was characterized by FT-IR, 1H NMR, 13C NMR as well as Hammett acidity function. This dicationic ionic liquid was used as a catalyst for the synthesis of xanthenediones via condensation of structurally diverse aldehydes and dimedone under solvent-free conditions. The progress of the reaction was monitored by thin layer chromatography (ethyl acetate/n-hexane = 3/7). Results: An efficient solvent-free method for the synthesis of xanthenediones has been developed in the presence of [(EtNH2)2SO][HSO4]2 as a powerful catalyst with high to excellent yields, and short reaction times. Additionally, recycling studies have demonstrated that the dicationic ionic liquid can be readily recovered and reused at least four times without significant loss of its catalytic activity. Conclusion: This new dicationic ionic liquid can act as a highly efficient catalyst for xanthenediones synthesis under solvent-free conditions.


2020 ◽  
Vol 23 (2) ◽  
pp. 157-167
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Objective: A facile and efficient method for synthesis of 3, 4-dihydropyrimidin-2(1H)-ones via Biginelli reaction catalyzed by a novel dicationic Brönsted acidic ionic liquid, [(EtNH2)2SO][HSO4]2, has been successfully developed. Material and Method:: 3, 4-Dihydropyrimidin-2(1H)-ones were synthesized through one-pot condensation of aromatic aldehydes, ethyl acetoacetate, and urea under solvent-free conditions using [(EtNH2)2SO][HSO4]2 as a novel catalyst. The progress of the reaction was monitored by thin-layer chromatography (ethyl acetate / n-hexane = 1 / 5). The products have been characterized by IR, 1H NMR, 13C NMR, and also by their melting points. Results: In this research, a library of dihydropyrimidinone derivatives was synthesized via Biginelli reaction under solvent-free conditions at 120oC using [(EtNH2)2SO][HSO4]2 as a catalyst. Various aromatic aldehydes, as well as heteroaromatic aldehydes, were employed, affording good to high yields of the corresponding products and illustrating the substrate generality of the present method. In addition, the prepared dicationic Brönsted acidic ionic liquid can be easily recovered and reused. Conclusion: 1, 1’-Sulfinyldiethylammonium bis (hydrogen sulfate), as a novel dicationic ionic liquid, can act as a highly efficient catalyst for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions.


2019 ◽  
Vol 16 (5) ◽  
pp. 776-786 ◽  
Author(s):  
Deepa ◽  
Geeta D. Yadav ◽  
Mohd J. Aalam ◽  
Pooja Chaudhary ◽  
Surendra Singh

Objective:DABCO salts were evaluated as catalysts for the Biginelli reaction between 4- methoxybenzaldehyde, urea and ethyl acetoacetate under solvent-free conditions. 1,4-Diazabicyclo [2.2.2] octane triflate was found to be a simple, inexpensive, highly efficient catalyst for Biginelli reaction for a variety aromatic aldehyde with urea and ethyl acetoacetate at 80°C afforded corresponding 3,4-dihydropyrimidinones in 50-99% yields after 30-120 minutes. 1,3-Cyclohexadione was used in place of ethyl acetoacetate in the absence of urea this methodology is giving hexahydro xanthene derivatives in good to excellent yields after 3-4 hours.Methods:DABCO salt 4 (5 mol%), 4-methoxybenzaldehyde (0.73 mmol) and urea (0.73 mmol) were stirred for 10 minutes at 80°C, then ethyl acetoacetate (1.5 equiv.) was added and reaction mixture was stirred at 80°C for specified time. The resulting solution was stirred continuously and progress of the reaction was followed by TLC. The crude reaction mixture was purified by flash column chromatography on silica gel (hexane/ethyl acetate (1:2)) to give pure desired product.Results:Reaction conditions of the Biginelli reaction were optimized using 4-methoxybenzaldehyde (0.73 mmol), urea (0.73 mmol), and ethyl acetoacetate (5 equiv.) as model substrates catalyzed by 1,4-Diazabicyclo [2.2.2] octane triflate (5 mol%) in a different solvents, screening of different catalysts and different temperatures. Neat condition was found to be the best for the Biginelli condensation and corresponding 3,4- dihydropyrimidinones was obtained in good to excellent yields. When the reaction was carried out with benzaldehyde derivatives and cyclohexane-1,3-dione in place of ethyl acetoacetate in the absence of urea, solely corresponding hexahydro xanthene derivatives were obtained in 61-91% yields.Conclusion:In conclusion, we have applied salts of 1,4-Diaza-bicyclo [2.2.2] octane as catalysts in the Biginelli condensation and corresponding 3,4-dihydropyrimidinones were obtained in 50- 99% yields under solvent free conditions. This methodology is having advantages like simple work-up; low loading of catalyst and reaction was performed at moderate temperature under solvent-free conditions.


RSC Advances ◽  
2020 ◽  
Vol 10 (52) ◽  
pp. 31662-31669
Author(s):  
Anlian Zhu ◽  
Tong Wang ◽  
Wanlu Feng ◽  
Jianji Wang ◽  
Lingjun Li

A cheap and biocompatible ionic liquid [Betaine][H2PO4] was found to be an efficient and reusable catalyst for the direct substitution reaction of xanthen-9-ol under solvent-free conditions.


Sign in / Sign up

Export Citation Format

Share Document