Attention-based framework for weakly supervised video anomaly detection

Author(s):  
Hualin Ma ◽  
Liyan Zhang
2020 ◽  
Vol 35 (23) ◽  
pp. 2050131
Author(s):  
Mohd Adli Md Ali ◽  
Nu’man Badrud’din ◽  
Hafidzul Abdullah ◽  
Faiz Kemi

Recently, the concept of weakly supervised learning has gained popularity in the high-energy physics community due to its ability to learn even with a noisy and impure dataset. This method is valuable in the quest to discover the elusive beyond Standard Model (BSM) particle. Nevertheless, the weakly supervised learning method still requires a learning sample that describes the features of the BSM particle truthfully to the classification model. Even with the various theoretical framework such as supersymmetry and the quantum black hole, creating a BSM sample is not a trivial task since the exact feature of the particle is unknown. Due to these difficulties, we propose an alternative classifier type called the one-class classification (OCC). OCC algorithms require only background or noise samples in its training dataset, which is already abundant in the high-energy physics community. The algorithm will flag any sample that does not fit the background feature as an abnormality. In this paper, we introduce two new algorithms called EHRA and C-EHRA, which use machine learning regression and clustering to detect anomalies in samples. We tested the algorithms’ capability to create distinct anomalous patterns in the presence of BSM samples and also compare their classification output metrics to the Isolation Forest (ISF), a well-known anomaly detection algorithm. Five Monte Carlo supersymmetry datasets with the signal to noise ratio equal to 1, 0.1, 0.01, 0.001, and 0.0001 were used to test EHRA, C-EHRA and ISF algorithm. In our study, we found that the EHRA with an artificial neural network regression has the highest ROC-AUC score at 0.7882 for the balanced dataset, while the C-EHRA has the highest precision-sensitivity score for the majority of the imbalanced datasets. These findings highlight the potential use of the EHRA, C-EHRA, and other OCC algorithms in the quest to discover BSM particles.


Author(s):  
Jie Wu ◽  
Wei Zhang ◽  
Guanbin Li ◽  
Wenhao Wu ◽  
Xiao Tan ◽  
...  

In this paper, we introduce a novel task, referred to as Weakly-Supervised Spatio-Temporal Anomaly Detection (WSSTAD) in surveillance video. Specifically, given an untrimmed video, WSSTAD aims to localize a spatio-temporal tube (i.e., a sequence of bounding boxes at consecutive times) that encloses the abnormal event, with only coarse video-level annotations as supervision during training. To address this challenging task, we propose a dual-branch network which takes as input the proposals with multi-granularities in both spatial-temporal domains. Each branch employs a relationship reasoning module to capture the correlation between tubes/videolets, which can provide rich contextual information and complex entity relationships for the concept learning of abnormal behaviors. Mutually-guided Progressive Refinement framework is set up to employ dual-path mutual guidance in a recurrent manner, iteratively sharing auxiliary supervision information across branches. It impels the learned concepts of each branch to serve as a guide for its counterpart, which progressively refines the corresponding branch and the whole framework. Furthermore, we contribute two datasets, i.e., ST-UCF-Crime and STRA, consisting of videos containing spatio-temporal abnormal annotations to serve as the benchmarks for WSSTAD. We conduct extensive qualitative and quantitative evaluations to demonstrate the effectiveness of the proposed approach and analyze the key factors that contribute more to handle this task.


Author(s):  
Tom Finck ◽  
David Schinz ◽  
Lioba Grundl ◽  
Rami Eisawy ◽  
Mehmet Yiğitsoy ◽  
...  

Abstract Purpose Advanced machine-learning (ML) techniques can potentially detect the entire spectrum of pathology through deviations from a learned norm. We investigated the utility of a weakly supervised ML tool to detect characteristic findings related to ischemic stroke in head CT and provide subsequent patient triage. Methods Patients having undergone non-enhanced head CT at a tertiary care hospital in April 2020 with either no anomalies, subacute or chronic ischemia, lacunar infarcts of the deep white matter or hyperdense vessel signs were retrospectively analyzed. Anomaly detection was performed using a weakly supervised ML classifier. Findings were displayed on a voxel-level (heatmap) and pooled to an anomaly score. Thresholds for this score classified patients into i) normal, ii) inconclusive, iii) pathological. Expert-validated radiological reports were considered as ground truth. Test assessment was performed with ROC analysis; inconclusive results were pooled to pathological predictions for accuracy measurements. Results During the investigation period 208 patients were referred for head CT of which 111 could be included. Definite ratings into normal/pathological were feasible in 77 (69.4%) patients. Based on anomaly scores, the AUC to differentiate normal from pathological scans was 0.98 (95% CI 0.97–1.00). The sensitivity, specificity, positive and negative predictive values were 100%, 40.6%, 80.6% and 100%, respectively. Conclusion Our study demonstrates the potential of a weakly supervised anomaly-detection tool to detect stroke findings in head CT. Definite classification into normal/pathological was made with high accuracy in > 2/3 of patients. Anomaly heatmaps further provide guidance towards pathologies, also in cases with inconclusive ratings.


2021 ◽  
Author(s):  
Yutao Dong ◽  
Qing Li ◽  
Richard O. Sinnott ◽  
Yong Jiang ◽  
Shutao Xia

2021 ◽  
pp. 1-1
Author(s):  
Shenghao Yu ◽  
Chong Wang ◽  
Qiaomei Mao ◽  
Yuqi Li ◽  
Jiafei Wu

2021 ◽  
pp. 1-12
Author(s):  
Weiying Xie ◽  
Xin Zhang ◽  
Yunsong Li ◽  
Jie Lei ◽  
Jiaojiao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document