scholarly journals Iron-doped zinc oxide nanoparticles-triggered elicitation of important phenolic compounds in cell cultures of Fagonia indica

Author(s):  
Atta Ullah Khan ◽  
Tariq Khan ◽  
Mubarak Ali Khan ◽  
Akhtar Nadhman ◽  
Muhammad Aasim ◽  
...  
RSC Advances ◽  
2020 ◽  
Vol 10 (72) ◽  
pp. 44397-44397
Author(s):  
Zhipan Wu ◽  
Rongfa Guan ◽  
Miao Tao ◽  
Fei Lyu ◽  
Guozhou Cao ◽  
...  

Correction for ‘Assessment of the toxicity and inflammatory effects of different-sized zinc oxide nanoparticles in 2D and 3D cell cultures’ by Zhipan Wu, Rongfa Guan, Miao Tao et al., RSC Adv., 2017, 7, 12437–12445, DOI: 10.1039/C6RA27334C.


2014 ◽  
Vol 258 ◽  
pp. 394-401 ◽  
Author(s):  
Arnab Mukherjee ◽  
Suman Pokhrel ◽  
Susmita Bandyopadhyay ◽  
Lutz Mädler ◽  
Jose R. Peralta-Videa ◽  
...  

2021 ◽  
Author(s):  
Atta Ullah Khan ◽  
Tariq Khan ◽  
Mubarak Ali Khan ◽  
Akhtar Nadhman ◽  
Muhammad Aasim ◽  
...  

Abstract Fagonia indica is an important medicinal plant species used traditionally against a variety of diseases. In this study, we initiated callus cultures from healthy stem explants. We observed maximum callus induction frequency (88%) on MS media supplemented with Thidiazuron (1.0 mg/mL). We also examined the callus cultures to determine the impact of iron-doped zinc oxide nanoparticles (Fe-ZnO-NPs) in concentrations (15.62 to 250 µg/mL) on biomass accumulation, secondary metabolism, and antioxidative potential in callus cultures of F. indica. Our results showed that maximum callus biomass (FW = 13.6 g and DW = 0.58 ± 0.01) was produced on day 40 when the media was supplemented with 250 µg/mL Fe-ZnO-NPs. Similarly, maximum TPC (268.36 µg GAE/g of DW) was detected in 40 days old callus added with 125 µg/mL Fe-ZnO-NPs. Maximum TFC (78.56 µg QE/g of DW) was observed in 20 days old callus grown in 62.5 µg/mL Fe-ZnO-NPs containing media. Maximum total antioxidant capacity (390.74 µg AAE/g of DW) was observed in 40 days old callus with 125 µg/mL Fe-ZnO-NPs treated cultures, respectively. The antioxidant potential was in correlation with the TPC. These results showed that Fe-ZnO-NPs elicitors can increase the biomass and activate secondary metabolism in F. indica cells.


RSC Advances ◽  
2017 ◽  
Vol 7 (21) ◽  
pp. 12437-12445 ◽  
Author(s):  
Zhipan Wu ◽  
Rongfa Guan ◽  
Miao Tao ◽  
Fei Lyu ◽  
Guozhou Cao ◽  
...  

Two-dimensional (2D) monolayer cell cultures are the most common in vitro models for mechanistic studies on the toxicity of engineered nanoparticles (NPs).


2019 ◽  
Vol 44 (4) ◽  
pp. 2407-2416 ◽  
Author(s):  
Harshiny Muthukumar ◽  
Samsudeen Naina Mohammed ◽  
NivedhiniIswarya Chandrasekaran ◽  
Aiswarya Devi Sekar ◽  
Arivalagan Pugazhendhi ◽  
...  

Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 215 ◽  
Author(s):  
Josué García-López ◽  
Francisco Zavala-García ◽  
Emilio Olivares-Sáenz ◽  
Ricardo Lira-Saldívar ◽  
Enrique Díaz Barriga-Castro ◽  
...  

The effects of zinc oxide nanoparticles on seed germination and seedling growth of Capsicum annuum L. were determined in this research. Total phenols content, total flavonoids, and condensed tannins, as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant capacity was determined. Results indicated that treatment with zinc oxide nanoparticles (ZnO-NPs) improved seed germination rate during the first seven days. The seed vigor germination increased 123.50%, 129.40% and 94.17% by treatment with ZnO-NPs suspensions at 100, 200 and 500 ppm, respectively. The morphological parameters tested revealed that ZnO-NPs treatments did not significantly affect plumule development, but they had a significant impact (p ≤ 0.01) on radicle length. Suspensions at 100, 200 and 500 ppm of ZnO-NPs inhibited seedling radicle growth and promoted accumulation of phenolic compounds, with a phytotoxic effect in this organ. Results suggested that zinc oxide nanoparticles influence seed vigor and seedling development and promoted the accumulation of desirable phenolic compounds in the radicle.


Sign in / Sign up

Export Citation Format

Share Document