Fingerprinting Positioning in Distributed Massive MIMO Systems Using Affinity Propagation Clustering and Gaussian Process Regression

Author(s):  
Seyedeh Samira Moosavi ◽  
Paul Fortier

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4267 ◽  
Author(s):  
Santosh Subedi ◽  
Jae-Young Pyun

Fingerprinting localization approach is widely used in indoor positioning applications owing to its high reliability. However, the learning procedure of radio signals in fingerprinting is time-consuming and labor-intensive. In this paper, an affinity propagation clustering (APC)-based fingerprinting localization system with Gaussian process regression (GPR) is presented for a practical positioning system with the reduced offline workload and low online computation cost. The proposed system collects sparse received signal strength (RSS) data from the deployed Bluetooth low energy beacons and trains them with the Gaussian process model. As the signal estimation component, GPR predicts not only the mean RSS but also the variance, which indicates the uncertainty of the estimation. The predicted RSS and variance can be employed for probabilistic-based fingerprinting localization. As the clustering component, the APC minimizes the searching space of reference points on the testbed. Consequently, it also helps to reduce the localization estimation error and the computational cost of the positioning system. The proposed method is evaluated through real field deployments. Experimental results show that the proposed method can reduce the offline workload and increase localization accuracy with less computational cost. This method outperforms the existing methods owing to RSS prediction using GPR and RSS clustering using APC.



2021 ◽  
Author(s):  
Seyedeh Samira Moosavi ◽  
Paul Fortier

Abstract Localization has drawn significant attention in 5G due to the fast-growing demand for location-based service (LBS). Massive multiple-input multiple-output (M-MIMO) has been introduced in 5G as a powerful technology due to its evident potentials for communication performance enhancement and localization in complicated environments. Fingerprint-based (FP) localization are promising methods for rich scattering environments thanks to their high reliability and accuracy. The Gaussian process regression (GPR) method could be used as an FP-based localization method to facilitate localization and provide high accuracy. However, this method has high computational complexity, especially in large-scale environments. In this study, we propose an improved and low-dimensional FP-based localization method in collocated massive MIMO orthogonal frequency division multiplexing (OFDM) systems using principal component analysis (PCA), the affinity propagation clustering (APC) algorithm, and Gaussian process regression (GPR) to estimate the user's location. Fingerprints are first extracted based on instantaneous channel state information (CSI) by taking full advantage of the high-resolution angle and delay domains. First, PCA is used to pre-process data and reduce the feature dimension. Then, the training fingerprints are clustered using the APC algorithm to increase prediction accuracy and reduce computation complexity. Finally, each cluster's data distribution is accurately modelled using GPR to provide support for further localization. Simulation results reveal that the proposed method improves localization performance significantly by reducing the location estimation error. Additionally, it reduces the matching complexity and computational complexity.



2021 ◽  
Author(s):  
Cheng Zhang ◽  
Mengzhe Wang ◽  
Weiliang He ◽  
Lujia Zhang ◽  
Yongming Huang


Author(s):  
Wence ZHANG ◽  
Yan NI ◽  
Hong REN ◽  
Ming CHEN ◽  
Jianxin DAI


2020 ◽  
Author(s):  
Marc Philipp Bahlke ◽  
Natnael Mogos ◽  
Jonny Proppe ◽  
Carmen Herrmann

Heisenberg exchange spin coupling between metal centers is essential for describing and understanding the electronic structure of many molecular catalysts, metalloenzymes, and molecular magnets for potential application in information technology. We explore the machine-learnability of exchange spin coupling, which has not been studied yet. We employ Gaussian process regression since it can potentially deal with small training sets (as likely associated with the rather complex molecular structures required for exploring spin coupling) and since it provides uncertainty estimates (“error bars”) along with predicted values. We compare a range of descriptors and kernels for 257 small dicopper complexes and find that a simple descriptor based on chemical intuition, consisting only of copper-bridge angles and copper-copper distances, clearly outperforms several more sophisticated descriptors when it comes to extrapolating towards larger experimentally relevant complexes. Exchange spin coupling is similarly easy to learn as the polarizability, while learning dipole moments is much harder. The strength of the sophisticated descriptors lies in their ability to linearize structure-property relationships, to the point that a simple linear ridge regression performs just as well as the kernel-based machine-learning model for our small dicopper data set. The superior extrapolation performance of the simple descriptor is unique to exchange spin coupling, reinforcing the crucial role of choosing a suitable descriptor, and highlighting the interesting question of the role of chemical intuition vs. systematic or automated selection of features for machine learning in chemistry and material science.



2018 ◽  
Author(s):  
Caitlin C. Bannan ◽  
David Mobley ◽  
A. Geoff Skillman

<div>A variety of fields would benefit from accurate pK<sub>a</sub> predictions, especially drug design due to the affect a change in ionization state can have on a molecules physiochemical properties.</div><div>Participants in the recent SAMPL6 blind challenge were asked to submit predictions for microscopic and macroscopic pK<sub>a</sub>s of 24 drug like small molecules.</div><div>We recently built a general model for predicting pK<sub>a</sub>s using a Gaussian process regression trained using physical and chemical features of each ionizable group.</div><div>Our pipeline takes a molecular graph and uses the OpenEye Toolkits to calculate features describing the removal of a proton.</div><div>These features are fed into a Scikit-learn Gaussian process to predict microscopic pK<sub>a</sub>s which are then used to analytically determine macroscopic pK<sub>a</sub>s.</div><div>Our Gaussian process is trained on a set of 2,700 macroscopic pK<sub>a</sub>s from monoprotic and select diprotic molecules.</div><div>Here, we share our results for microscopic and macroscopic predictions in the SAMPL6 challenge.</div><div>Overall, we ranked in the middle of the pack compared to other participants, but our fairly good agreement with experiment is still promising considering the challenge molecules are chemically diverse and often polyprotic while our training set is predominately monoprotic.</div><div>Of particular importance to us when building this model was to include an uncertainty estimate based on the chemistry of the molecule that would reflect the likely accuracy of our prediction. </div><div>Our model reports large uncertainties for the molecules that appear to have chemistry outside our domain of applicability, along with good agreement in quantile-quantile plots, indicating it can predict its own accuracy.</div><div>The challenge highlighted a variety of means to improve our model, including adding more polyprotic molecules to our training set and more carefully considering what functional groups we do or do not identify as ionizable. </div>





Sign in / Sign up

Export Citation Format

Share Document