Exploring the impact of tourism and energy consumption on the load capacity factor in Turkey: a novel dynamic ARDL approach

Author(s):  
Ugur Korkut Pata ◽  
Daniel Balsalobre-Lorente
2021 ◽  
Vol 9 ◽  
Author(s):  
Zeeshan Fareed ◽  
Sultan Salem ◽  
Tomiwa Sunday Adebayo ◽  
Ugur Korkut Pata ◽  
Farrukh Shahzad

Sustainable development and reducing environmental pressure are major issues that concern developed as well as developing countries. Although researchers widely use carbon dioxide emissions and ecological footprint within the scope of environmental degradation, a more comprehensive ecological indicator is needed to assess environmental sustainability. In this context, the load capacity factor enables a comprehensive environmental sustainability assessment through the simultaneous analysis of biocapacity and ecological footprint. However, there are few studies analyzing the determinants of load capacity factor and this study aims to fill this gap for Indonesia. Using the recently developed Fourier quantile causality test, this study investigates the impact of income, export diversification, non-renewable and renewable energy consumption on the load capacity factor for Indonesia during 1965Q1–2014Q4. The results show unidirectional causality from non-renewable energy consumption to the load capacity factor at all quantiles, while income, export diversification, and renewable energy are the causes of environmental quality at middle and higher quantiles (within 0.5, 0.7, and 0.9). Most importantly, renewable energy and export diversification increase the load capacity factor and thus support environmental quality. In contrast, an increase in income and consumption of non-renewable energy reduces the load capacity factor. These results highlight the importance of renewable energy and export diversification for the sustainable development of Indonesia.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


2016 ◽  
Vol 21 (1) ◽  
pp. 9-20
Author(s):  
Ersalina Tang

The purpose of this study is to analyze the impact of Foreign Direct Investment, Gross Domestic Product, Energy Consumption, Electric Consumption, and Meat Consumption on CO2 emissions of 41 countries in the world using panel data from 1999 to 2013. After analyzing 41 countries in the world data, furthermore 17 countries in Asia was analyzed with the same period. This study utilized quantitative approach with Ordinary Least Square (OLS) regression method. The results of 41 countries in the world data indicates that Foreign Direct Investment, Gross Domestic Product, Energy Consumption, and Meat Consumption significantlyaffect Environmental Qualities which measured by CO2 emissions. Whilst the results of 17 countries in Asia data implies that Foreign Direct Investment, Energy Consumption, and Electric Consumption significantlyaffect Environmental Qualities. However, Gross Domestic Product and Meat Consumption does not affect Environmental Qualities.


The demand for energy consumption requires efficient financial development in terms of bank credit. Therefore, this study examines the nexus between Financial Development, Economic Growth, Energy Prices and Energy Consumption in India, utilizing Vector Error Correction Model (VECM) technique to determine the nature of short and long term relationships from 2010 to 2019. The estimation of results indicates that a one percent increase in bank credits to private sector results in 0.10 percent increase in energy consumption and 0.28 percent increase in energy consumption responses to 1 percent increase in economic growth. It is also observed that the impact of energy price proxied by consumer price index is statistically significant with a negative sign indicating the consistency with the theory.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Batyrbek Alimkhanuly ◽  
Joon Sohn ◽  
Ik-Joon Chang ◽  
Seunghyun Lee

AbstractRecent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual device design, optimized interconnects, and careful material selection are key factors determining the overall computation performance. In this work, the impact of replacing conventional devices with microfabricated, graphene-based VRRAM is investigated for circuit and algorithmic levels. By exploiting a sub-nm thin 2D material, the VRRAM array demonstrates an improved read/write margins and read inaccuracy level for the weighted-sum procedure. Moreover, energy consumption is significantly reduced in array programming operations. Finally, an XNOR logic-inspired architecture designed to integrate 1-bit ternary precision synaptic weights into graphene-based VRRAM is introduced. Simulations on VRRAM with metal and graphene word-planes demonstrate 83.5 and 94.1% recognition accuracy, respectively, denoting the importance of material innovation in neuromorphic computing.


2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


Sign in / Sign up

Export Citation Format

Share Document