Adaptive particle swarm optimization–based deep neural network for productivity enhancement of solar still

Author(s):  
Winstor Jebakumar Suthagar Durairaj Victor ◽  
Dharmalingam Somasundaram ◽  
Koilraj Gnanadason
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Ghusn Abdul Redha Ibraheem ◽  
Ahmad Taher Azar ◽  
Ibraheem Kasim Ibraheem ◽  
Amjad J. Humaidi

The design of a swarm optimization-based fractional control for engineering application is an active research topic in the optimization analysis. This work offers the analysis, design, and simulation of a new neural network- (NN) based nonlinear fractional control structure. With suitable arrangements of the hidden layer neurons using nonlinear and linear activation functions in the hidden and output layers, respectively, and with appropriate connection weights between different hidden layer neurons, a new class of nonlinear neural fractional-order proportional integral derivative (NNFOPID) controller is proposed and designed. It is obtained by approximating the fractional derivative and integral actions of the FOPID controller and applied to the motion control of nonholonomic differential drive mobile robot (DDMR). The proposed NNFOPID controller’s parameters consist of derivative, integral, and proportional gains in addition to fractional integral and fractional derivative orders. The tuning of these parameters makes the design of such a controller much more difficult than the classical PID one. To tackle this problem, a new swarm optimization algorithm, namely, MAPSO-EFFO algorithm, has been proposed by hybridization of the modified adaptive particle swarm optimization (MAPSO) and the enhanced fruit fly optimization (EFFO) to tune the parameters of the NNFOPID controller. Firstly, we developed a modified adaptive particle swarm optimization (MAPSO) algorithm by adding an initial run phase with a massive number of particles. Secondly, the conventional fruit fly optimization (FFO) algorithm has been modified by increasing the randomness in the initialization values of the algorithm to cover wider searching space and then implementing a variable searching radius during the update phase by starting with a large radius which decreases gradually during the searching phase. The tuning of the parameters of the proposed NNFOPID controller is carried out by reducing the MS error of 0.000059, whereas the MSE of the nonlinear neural system (NNPID) is equivalent to 0.00079. The NNFOPID controller also decreased control signals that drive DDMR motors by approximately 45 percent compared to NNPID and thus reduced energy consumption in circular trajectories. The numerical simulations revealed the excellent performance of the designed NNFOPID controller by comparing its performance with that of nonlinear neural (NNPID) controllers on the trajectory tracking of the DDMR with different trajectories as study cases.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Ashraf Ullah ◽  
Nadeem Javaid ◽  
Adamu Sani Yahaya ◽  
Tanzeela Sultana ◽  
Fahad Ahmad Al-Zahrani ◽  
...  

This paper presents a hybrid model, named as hybrid deep neural network, which combines convolutional neural network, particle swarm optimization, and gated recurrent unit, termed as convolutional neural network-particle swarm optimization-gated recurrent unit model. The major aims of the model are to perform accurate electricity theft detection and to overcome the issues in the existing models. The issues include overfitting and inability of the models to handle imbalanced data. For this purpose, the electricity consumption data of smart meters is taken from state grid corporation of China. An electric utility company gathers the data from the intelligent antenna-based smart meters installed at the consumers’ end. The dataset contains real-time data with missing values and outliers. Therefore, it is first preprocessed to get the refined data followed by feature engineering for selection and extraction of the finest features from the dataset using convolutional neural network. The classification of electricity consumers is performed by dividing them into honest and fraudulent classes using the proposed particle swarm optimization-gated recurrent unit model. The proposed model is evaluated by performing simulations in terms of several performance measures that include accuracy, area under the curve, F 1 -score, recall, and precision. The comparison between the proposed hybrid deep neural network and benchmark models is also performed. The benchmark models include gated recurrent unit, long short term memory, logistic regression, support vector machine, and genetic algorithm-based gated recurrent unit. The results indicate that the proposed hybrid deep neural network model is more efficient in handling class imbalanced issues and performing electricity theft detection. The robustness, accuracy, and generalization of the model are also analyzed in the proposed work.


2018 ◽  
Vol 8 (12) ◽  
pp. 2611 ◽  
Author(s):  
Nanqi Yuan ◽  
Wenli Yang ◽  
Byeong Kang ◽  
Shuxiang Xu ◽  
Xiaolin Wang

This work reports a novel method by fusing Laplacian Eigenmaps feature conversion and deep neural network (DNN) for machine condition assessment. Laplacian Eigenmaps is adopted to transform data features from original high dimension space to projected lower dimensional space, the DNN is optimized by the particle swarm optimization algorithm, and the machine run-to-failure experiment were investigated for validation studies. Through a series of comparative experiments with the original features, two other effective space transformation techniques, Principal Component Analysis (PCA) and Isometric map (Isomap), and two other artificial intelligence methods, hidden Markov model (HMM) as well as back-propagation neural network (BPNN), the present method in this paper proved to be more effective for machine operation condition assessment.


Sign in / Sign up

Export Citation Format

Share Document