Lignocellulosic materials as soil–cement brick reinforcement

Author(s):  
Ticyane Pereira Freire Sabino ◽  
Nayane Pereira Freire Coelho ◽  
Nayhara Camila Andrade ◽  
Stefânia Lima Oliveira Metzker ◽  
Queilla Santos Viana ◽  
...  
2000 ◽  
Vol 49 (1) ◽  
pp. 46-49
Author(s):  
Takeo SUZUKI ◽  
Toshimitsu KUNITO ◽  
Motohiro NISHI

2017 ◽  
Vol 14 (6) ◽  
pp. 778-784 ◽  
Author(s):  
Joanna Brzeska

Background: Cross-linking structure of polyurethanes determines no degradability of these materials. However, introducing the hydrolysable substrates (of natural or synthetic origin) into the cross-linked polyurethanes structure makes them biodegradable. Moreover compounds (such as polycaprolactone triol, glycerin, lysine triisocyanate, etc.) that are used for polyurethane cross-linking are degraded in non-toxic products. All these kinds of compounds can be introduced into soft or hard segments via urethane bonds. Objective: The review focuses on kind of multifunctional polyols and isocyanates, and low molecular crosslinkers used for cross-linked polyurethanes obtaining. These compounds are natural substrates (in the native state or after modification) or are synthetic compounds with degradable linkages. They belong to polyesters, plant oils, proteins, saccharides, and others (e.g. lignocellulosic materials), and they are synthesized chemically or via biosynthesis by algae, plants, microorganisms, and by animals. Conclusion: Incorporation of degradable groups (such as ester moieties) into the polymer structure, and using of substrates with the structure known and metabolized by microorganisms for soft or hard segments building, facilitate degradation of cross-linked polyurethanes.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 87
Author(s):  
Ali Umut Şen ◽  
Helena Pereira

In recent years, there has been a surge of interest in char production from lignocellulosic biomass due to the fact of char’s interesting technological properties. Global char production in 2019 reached 53.6 million tons. Barks are among the most important and understudied lignocellulosic feedstocks that have a large potential for exploitation, given bark global production which is estimated to be as high as 400 million cubic meters per year. Chars can be produced from barks; however, in order to obtain the desired char yields and for simulation of the pyrolysis process, it is important to understand the differences between barks and woods and other lignocellulosic materials in addition to selecting a proper thermochemical method for bark-based char production. In this state-of-the-art review, after analyzing the main char production methods, barks were characterized for their chemical composition and compared with other important lignocellulosic materials. Following these steps, previous bark-based char production studies were analyzed, and different barks and process types were evaluated for the first time to guide future char production process designs based on bark feedstock. The dry and wet pyrolysis and gasification results of barks revealed that application of different particle sizes, heating rates, and solid residence times resulted in highly variable char yields between the temperature range of 220 °C and 600 °C. Bark-based char production should be primarily performed via a slow pyrolysis route, considering the superior surface properties of slow pyrolysis chars.


2021 ◽  
Vol 109 ◽  
pp. 365-373
Author(s):  
Gabriela N. Pereira ◽  
Karina Cesca ◽  
Anelise Leal Vieira Cubas ◽  
Débora de Oliveira

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 471
Author(s):  
H. A. Aisyah ◽  
M. T. Paridah ◽  
S. M. Sapuan ◽  
R. A. Ilyas ◽  
A. Khalina ◽  
...  

Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.


Author(s):  
W. Griffin Sullivan ◽  
Isaac L. Howard

The Proctor test method, as specified in AASHTO T134 and ASTM D558, continues to play a vital role in design and construction quality control for soil-cement materials. However, neither test method establishes a methodology or standardized protocols to characterize the effects of time delay between cement addition and compaction, also known as compaction delay. Compaction delay has been well documented to have a notably negative effect on compactability, compressive strength, and overall performance of soil-cement materials, but specification tools to address this behavior are not prevalent. This paper aims to demonstrate the extent of compaction delay effects on several soil-cement mixtures used in Mississippi and to present recommended new test method protocols for AASHTO T134 to characterize compaction delay effects. Data presented showed that not all soil-cement mixtures are sensitive to compaction delay, but some mixtures can be very sensitive and lead to a meaningful decrease in specimen dry density. Recommended test method protocols were presented for AASHTO T134 and commentary was presented to provide state Departments of Transportation and other specifying agencies a few examples of how the new compaction delay protocols could be implemented.


Sign in / Sign up

Export Citation Format

Share Document