A review of antibiotic removal from domestic wastewater using the activated sludge process: removal routes, kinetics and operational parameters

Author(s):  
Chee Xiang Chen ◽  
Azmi Aris ◽  
Ee Ling Yong ◽  
Zainura Zainon Noor
1993 ◽  
Vol 28 (10) ◽  
pp. 267-274 ◽  
Author(s):  
M. Imura ◽  
E. Suzuki ◽  
T. Kitao ◽  
S. Iwai

In order to apply a sequencing batch reactor activated sludge process to small scale treatment facilities, various experiments were conducted by manufacturing an experimental apparatus made of a factory-produced FRP cylinder transverse tank (Ø 2,500mm). Results of the verification test conducted for one year by leading the wastewater discharged from apartment houses into the experimental apparatus were as follows. Excellent performance was achieved without any addition of carbon source, irrespective of the organic compound concentration and the temperature of raw wastewater. Organic substances, nitrogen and phosphorus were removed simultaneously. Due to the automated operation format, stable performance was obtained with only periodic maintenance. Though water depth of the experimental plant was shallow, effective sedimentation of activated sludge was continued during the experimental period. Regarding the aerobic and anaerobic process, nitrification and denitrification occurred smoothly.


2002 ◽  
Vol 46 (9) ◽  
pp. 229-236 ◽  
Author(s):  
M.R. Alavi Moghaddam ◽  
H. Satoh ◽  
T. Mino

A coarse pore filter can be applied inside the aeration tank instead of sedimentation tank for liquid separation from the sludge. It has pores, which are irregular in shape, and much bigger than micro-filtration membrane pores in size. The objective of the study was to investigate the effect of important operational parameters such as flux, aeration intensity, and solid retention time (SRT) on the performance of the coarse pore filtration activated sludge process. The effect of these parameters was studied in laboratory scale experiments. It was found that the flux had a significant role in the effluent quality of this system. The effluent SS and turbidity were not changed significantly at different aeration intensities. Three SRTs, 10, 30 and longer days (without excess sludge) were used for three reactors to check the effect of this parameter on the system performance. The results of the reactors with SRTs about 10 and 30 days have shown very good effluent quality without any filter clogging for more than 4 months operation. For the reactor with long SRT, the filter clogging was observed after about 80 days of operation, which caused the increase of the operation pressure and deterioration in the effluent quality for a few days.


1994 ◽  
Vol 29 (7) ◽  
pp. 193-202 ◽  
Author(s):  
Jiri Wanner

The factors affecting the growth of most common filamentous microorganisms are discussed. In a design procedure the following factors should be considered: wastewater composition (readily and slowly biodegradable substrates, inoculation), biomass retention time, actual substrate concentration in reactor, operational parameters in reactor (DO and nutrients concentration, pH, temperature) and cultivation conditions. The configurations of activated sludge process supporting the growth of floc-formers are described. As general design methods and criteria for the design of bulking control systems are not available due to the complexity of selection mechanisms, the technological parameters from successful bulking control case histories are summarized. The possibilities of mathematical activated sludge process models for design purposes are evaluated.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 285-292 ◽  
Author(s):  
M. Sarioğlu ◽  
D. Orhon ◽  
E. Görgün ◽  
N. Artan

The contact stabilization activated sludge process (CSASP) has been adopted and applied in full scale plants treating domestic sewage. Acquiring smaller volume thereby reducing costs and achieving the same treatment efficiency as the conventional activated sludge plants are the main advantages of the CSASP. This activated sludge modification is especially ideal for small to mid-scale plants where influent wastewater contains a high fraction of particulate COD. The simulation results reveal that the same amount of mass sludge can be retained in the system with almost 30% volume reduction compared to conventional activated sludge plants. It is also found that the CSASP treatment efficiency increases when the particulate COD fraction of an influent domestic wastewater increases. The most important process component in the design of CSASP is the sludge distribution factor (α) which directly affects the effluent characterization Having most of the biomass in the stabilization reactor (meaning low α values) decreases the nominal hydraulic retention time (θHN) of the system. However the sludge distribution factor must be high enough to ensure an acceptable effluent quality.


2006 ◽  
Vol 54 (5) ◽  
pp. 69-76 ◽  
Author(s):  
G.W. Strünkmann ◽  
J.A. Müller ◽  
F. Albert ◽  
J. Schwedes

The usability of mechanical disintegration techniques for the reduction of excess sludge production in the activated sludge process was investigated. Using three different disintegration devices (ultrasonic homogeniser, stirred media mill, high pressure homogeniser) and different operational parameters of the disintegration, the effect of mechanical disintegration on the excess sludge production and on the effluent quality was studied within a continuously operated, laboratory scale wastewater treatment system with pre-denitrification. Depending on the operational conditions and the disintegration device used, a reduction of excess sludge production of up to 70% was achieved. A combination of mechanical disintegration with a membrane bioreactor process with high sludge age is more energy effective concerning reduction of sludge production than with a conventional activated sludge process at lower sludge ages. Depending on the disintegration parameters, the disintegration has no, or only minor, negative effect on the soluble effluent COD and on the COD-removal capacity of the activated sludge process. Nitrogen-removal was slightly deteriorated by the disintegration, whereas the system used was not optimised for nitrogen removal before disintegration was implemented.


Sign in / Sign up

Export Citation Format

Share Document