Aerodynamic effects of impeller-diffuser axial misalignment in low-flow-coefficient centrifugal compressor

2014 ◽  
Vol 58 (1) ◽  
pp. 29-36 ◽  
Author(s):  
ZhiHeng Wang ◽  
Guang Xi ◽  
QingFang Liu
2019 ◽  
Vol 140 ◽  
pp. 06010 ◽  
Author(s):  
Aleksey Yablokov ◽  
Ivan Yanin ◽  
Nikolay Sadovskyi ◽  
Yuri Kozhukhov ◽  
Minh Hai Nguyen

The study presents the simulation results of the viscid gas flow in low flow coefficient centrifugal compressor stages. The problem is solved in a stationary formulation using the Ansys CFX software package. The numerical simulation is carried out on three ultrahigh-pressure model stages; two stages have blades of the classical type impeller and one stage is of the bodily type. The value of the conditional flow coefficient is 0.0063 to 0.015. As part of the study, block-structured design meshes are used for all gas channel elements, with their total number being equaled as 13–15 million. During the calculations a numerical characteristic was validated with the results of tests carried out at the Department of Compressor, Vacuum and Refrigeration Engineering of Peter the Great St. Petersburg Polytechnic University. With an increase of inlet pressure as a result of a numerical study, it was found that for a given mathematical model the disk friction and leakage coefficient (1 + βfr + βlk) is overestimated. The analysis of flow in labyrinth seals has shown an increase of total temperature near the discs by 30–50 °С, nevertheless this fact did not influence gas parameters in the behind-the-rotor section. The calculation data obtained with finer design mesh (the first near-wall cell was 0.001 mm) is identical to those obtained with the first near-wall cell 0.01 mm mesh.


Author(s):  
Zhiheng Wang ◽  
Liqun Xu ◽  
Guang Xi

The leakage flow across the shroud of a centrifugal compressor impeller has an important effect on the compressor’s performance, in particular, in the low flow coefficient compressor. This paper presents the three-dimensional CFD simulations and the Radial Basis Function (RBF) model to investigate the aerodynamic performance of the labyrinth seal as well as the low flow coefficient centrifugal impeller. The CFD simulations are performed on the computational domain consisting of the labyrinth seal and the impeller. The relationship between the leakage loss coefficient and the isentropic efficiency is indicated. With the application of the RBF model, the global sensitivity analysis to the seal geometric design parameters is carried out, and the geometry of the labyrinth seal is optimized. The leakage of the optimized labyrinth seal is reduced remarkably and the impeller’s isentropic efficiency improved by 2% in a wide operating range.


Author(s):  
C. Xu ◽  
R. S. Amano

A low flow coefficient unshrouded centrifugal compressor would give up clearance very large in relation to the span of the blades, because centrifugal compressors produce a sufficiently large pressure rise in fewer stages. This problem is more acute for a low flow high-pressure ratio impeller. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range for a low flow coefficient centrifugal compressor is a great challenge. This paper describes a new development of high efficiency and large surge margin low flow coefficient (0.145) centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in this centrifugal compressor design. The new compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A three-dimensional low solidity diffuser design method is proposed and applied to this design. This design is successful to extend the low solidarity diffusers to high-pressure ratio compressor. It is demonstrated that the design is in a great success. The design performance range of the total to static efficiency of the compressor is about 85% and stability range is over 35%. The experimental results showed that the test results are in good agreement with the design.


Author(s):  
C. Xu ◽  
R. S. Amano

A low flow coefficient unshrouded centrifugal compressor would give up clearance very large in relation to the span of the blades, because centrifugal compressors produce a sufficiently large pressure rise in fewer stages. This problem is more acute for a low flow high-pressure ratio impeller. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range for a low flow coefficient centrifugal compressor is a great challenge. This paper describes a new development of high efficiency and large surge margin low flow coefficient (0.145) centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in this centrifugal compressor design. The new compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A three-dimensional low solidity diffuser design method is proposed and applied to this design. This design is successful to extend the low solidarity diffusers to high-pressure ratio compressor. It is demonstrated that the design is in a great success. The design performance range of the total to static efficiency of the compressor is about 85% and stability range is over 35%. The experimental results showed that the test results are in good agreement with the design.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Yongsheng Wang ◽  
Feng Lin ◽  
Chaoqun Nie ◽  
Abraham Engeda

Very low flow coefficient centrifugal compressors are often applied as the last stages of multistage compressors. Due to the lower volume flow rate, the flow channels in the impeller and diffuser are so narrow that friction loss becomes the main factor, which leads to lower efficiency than that of other stages in the same compressors. In addition, most of design methods are generally based on medium flow coefficient centrifugal compressors. Taking on researches on the low flow coefficient centrifugal compressors is significant and necessary. One-dimensional (1D) code, consisting of design and analysis parts, is developed in this study to provide basic geometric data and predict the entire performance of centrifugal compressor. Three-dimensional geometry of the impeller is built. CFD simulation is carried out as well to be compared with 1D prediction. With the continuous geometry adjustment, the final performance of the centrifugal compressor will be fixed once the performance discrepancy between CFD and one-dimensional code is acceptable. The details on the flow field within impeller will be presented through CFD.


Author(s):  
Zhiheng Wang ◽  
Guang Xi

A low flow coefficient centrifugal compressor stage is characterized by the small relative outlet width, and is often one of the latter stages in the multistage compressor. The low flow coefficient stage is known to give lower stage efficiency in comparison with the conventional stage, which still leaves much more space to be improved with modern tools such as CFD techniques. In the paper the flow in a CO2 centrifugal compressor stage with a low design flow coefficient of 0.008 is simulated based on the 3D viscous CFD codes. The analysis shows the impeller gives a favorable performance over a wide range of low flow coefficient, but the high losses exist in the stationary components and this incurs the poor performance of the whole stage. In this case, the diffuser, the return channel and the meridional plane are redesigned. The redesigned stage has distinct improvements on the performance and the flow structure.


2020 ◽  
Vol 10 (24) ◽  
pp. 9138
Author(s):  
Sergey Kartashov ◽  
Yuri Kozhukhov ◽  
Vycheslav Ivanov ◽  
Aleksei Danilishin ◽  
Aleksey Yablokov ◽  
...  

In this paper, we review the problem of accounting for heat exchange between the flow and the flow part surfaces when creating a calculation model for modeling the workflow process of low-flow stages of a centrifugal compressor using computational fluid dynamics (CFD). The objective selected for this study was a low-flow intermediate type stage with the conditional flow coefficient Փ = 0.008 and the relative width at the impeller exit b2/D2 = 0.0133. We show that, in the case of modeling with widespread adiabatic wall simplification, the calculated temperature in the gaps between the impeller and the stator elements is significantly overestimated. Modeling of the working process in the flow part was carried out with a coupled heat exchanger, as well as with simplified accounting for heat transfer by setting the temperatures of the walls. The gas-dynamic characteristics of the stage were compared with the experimental data, the heat transfer influence on the disks friction coefficient was estimated, and the temperature distributions in the gaps between disks and in the flow part of the stage were analyzed. It is shown that the main principle when modeling the flow in low-flow stage is to ensure correct temperature distribution in the gaps.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4292
Author(s):  
Kirill Kabalyk ◽  
Andrzej Jaeschke ◽  
Grzegorz Liśkiewicz ◽  
Michał Kulak ◽  
Tomasz Szydłowski ◽  
...  

The article describes an assessment of possible changes in constant fatigue life of a medium flow-coefficient centrifugal compressor impeller subject to operation at close-to-surge point. Some aspects of duct acoustics are additionally analyzed. The experimental measurements at partial load are presented and are primarily used for validation of unidirectionally coupled fluid-structural numerical model. The model is based on unsteady finite-volume fluid-flow simulations and on finite-element transient structural analysis. The validation is followed by the model implementation to replicate the industry-scale loads with reasonably higher rotational speed and suction pressure. The approach demonstrates satisfactory accuracy in prediction of stage performance and unsteady flow field in vaneless diffuser. The latter is deduced from signal analysis relying on continuous wavelet transformations. On the other hand, it is found that the aerodynamic incidence losses at close-to-surge point are underpredicted. The structural simulation generates considerable amounts of numerical noise, which has to be separated prior to evaluation of fluid-induced dynamic strain. The main source of disturbance is defined as a stationary region of static pressure drop caused by flow contraction at volute tongue and leading to first engine-order excitation in rotating frame of reference. Eventually, it is concluded that the amplitude of excitation is too low to lead to any additional fatigue.


Author(s):  
Fabian Dietmann ◽  
Michael Casey ◽  
Damian M. Vogt

Abstract Further validation of an analytic method to calculate the influence of changes in Reynolds number, machine size and roughness on the performance of axial and radial turbocompressors is presented. The correlation uses a dissipation coefficient as a basis for scaling the losses with changes in relative roughness and Reynolds number. The original correlation from Dietmann and Casey [6] is based on experimental data and theoretical models. Evaluations of five numerically calculated compressor stages at different flow coefficients are presented to support the trends of the correlation. It is shown that the sensitivity of the compressor performance to Reynolds and roughness effects is highest for low flow coefficient radial stages and steadily decreases as the design flow coefficient of the stage and the hydraulic diameter of the flow channels increases.


Sign in / Sign up

Export Citation Format

Share Document