Mosquito Repellent and Antibacterial Efficiency of Facile and Low-Cost Silver Nanoparticles Synthesized Using the Leaf Extract of Morinda citrifolia

Plasmonics ◽  
2021 ◽  
Author(s):  
Sunday Adewale Akintelu ◽  
Aderonke Similoluwa Folorunso ◽  
Abel Kolawole Oyebamiji ◽  
Seyifunmi Charles Olugbeko
RSC Advances ◽  
2016 ◽  
Vol 6 (99) ◽  
pp. 96573-96583 ◽  
Author(s):  
Raja Mohamed Sait Thameem Azarudeen ◽  
Marimuthu Govindarajan ◽  
Abubucker Amsath ◽  
Shine Kadaikunnan ◽  
Naiyf S. Alharbi ◽  
...  

As a low-cost and eco-friendly control tool, Ag nanoparticles were fabricated usingHedyotis puberulaaqueous extract as a reducing and capping agent and showed potent activity against malaria and arbovirus vectors with low biotoxicity against non-target aquatic organisms.


2016 ◽  
Vol 45 (6) ◽  
pp. 1165-1171 ◽  
Author(s):  
Arthanari Saravanakumar ◽  
Mei Mei Peng ◽  
Mani Ganesh ◽  
Jayabalan Jayaprakash ◽  
Murugan Mohankumar ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1273
Author(s):  
María G. González-Pedroza ◽  
Liliana Argueta-Figueroa ◽  
René García-Contreras ◽  
Yaiza Jiménez-Martínez ◽  
Eduardo Martínez-Martínez ◽  
...  

Cancer is one of the most prevalent diseases in the world and requires new therapies for its treatment. In this context, the biosynthesis of silver nanoparticles (AgNPs) has been developed to treat different types of tumors. The Annona muricata plant is known for having anticancer activity. Its main compounds present in the leaves, stems and skin, allowing for its use as reducing agents. In this manuscript, AgNPs with leaf extract (AgNPs-LE) and fruit peel extract (AgNPs-PE) of A. muricata were biosynthesized obtaining an average nanoparticle diameter sizes smaller than 50 nm, being 19.63 ± 3.7 nm and 16.56 ± 4.1 nm, and with a surface plasmonic resonance (SPR) at 447 and 448 nm, respectively. The lactone functional group present in the LE and PE extracts was identified by the FTIR technique. The behavior and antiproliferation activity of AgNPs-LE and AgNPs-PE were evaluated in breast, colon and melanoma cancer cell lines. Our results showed that Annona muricata fruit peel, which is a waste product, has an antitumor effect more potent than leaf extract. This difference is maintained with AgNPs where the destruction of cancer cells was, for the first time, achieved using concentrations that do not exceed 3 μg/mL with a better therapeutic index in the different tumor strains. In conclusion, we present a low-cost one-step experimental setup to generate AgNPs-PE whose in-vitro biocompatibility and powerful therapeutic effect make it a very attractive tool worth exploiting.


2018 ◽  
Vol 42 (19) ◽  
pp. 15905-15916 ◽  
Author(s):  
Fayezeh Samari ◽  
Hossein Salehipoor ◽  
Ebrahim Eftekhar ◽  
Saeed Yousefinejad

Aqueous mango leaf extract was used as a reducing and capping agent for the biosynthesis of silver nanoparticles (AgNPs)viaa single-step, low cost and green process.


Author(s):  
M. Linga Rao ◽  
Bhumi G ◽  
Savithramma N

Silver nanoparticles (SNPs) exhibit tremendous applications in medicine as antimicrobial agent.  The use of different parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals.  In the present study, we report a rapid biosynthesis of silver nanoparticles from aqueous leaf extract of medicinal plant Allamanda cathartica.  The active phytochemicals present in the plant were responsible for the quick reduction of silver ion to metallic silver nanoparticles. The reduced silver nanoparticles were characterized by using UV-Vis spectrophotometry, Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-ray (EDAX) and Atomic Force Microscopy (AFM).  The spherical shaped silver nanoparticles were observed and it was found to 19-40 nm range of size.  These phytosynthesized SNPs were tested for their antimicrobial activity and it analyzed by measuring the inhibitory zone. A. cathartica aqueous leaf extract of SNPs showed highest toxicity to Pseudomonas followed by Klebsiella, Bacillus and E. coli and lowest toxicity towards Proteus. In fungal species, highest inhibition zone was noted against Rhizopus followed by Curvularia, Aspergillus flavus and Aspergillus niger and minimum inhibition zone was observed against Fusarium species.  These results suggest a promising potential of Indian plant-based green chemistry for production of SNPs for biomedical and nanotechnology applications.


Author(s):  
K.K. Gupta ◽  
Neha Kumari ◽  
Neha Sinha ◽  
Akruti Gupta

Biogenic synthesis of silver nanoparticles synthesized from Hymenocallis species (Spider Lilly) leaf extract was subjected for investigation of its antimicrobial property against four bacterial species (E. coli, Salmonella sp., Streptococcus sp. & Staphylococcus sp.). The results revealed that synthesized nanoparticles solution very much justify the color change property from initial light yellow to final reddish brown during the synthesis producing a characteristics absorption peak in the range of 434-466 nm. As antimicrobial agents, their efficacy was evaluated by analysis of variance in between the species and among the different concentration of AgNPs solution, which clearly showed that there was significant variation in the antibiotic property between the four different concentrations of AgNPs solution and also among four different species of bacteria taken under studies. However, silver nanoparticles solution of 1: 9 and 1:4 were proved comparatively more efficient as antimicrobial agents against four species of bacteria.


Sign in / Sign up

Export Citation Format

Share Document