scholarly journals Interactive teaching environment for diagnostic radiography with real-time X-ray simulation and patient positioning

Author(s):  
Aaron Sujar ◽  
Graham Kelly ◽  
Marcos García ◽  
Franck P. Vidal

Abstract Purpose Traditional undergraduate radiographer training mixes academic lectures and clinical practice. Our goal is to bridge the current disconnection between theory and practice in a safe environment, avoiding the risk of radiation for both practitioners and patients. To this end, this research proposes a new software to teach diagnostic radiography using real-time interactive X-ray simulation and patient positioning. Methods The proposed medical simulator is composed of three main modules. A fast and accurate character animation technique is in charge of simulating the patient positioning phase and adapts their internal anatomy accordingly. gVirtualXRay is an open-source X-ray simulation library and generates the corresponding radiographs in real time. Finally, the courseware allows going through all the diagnostic radiology steps from the patient positioning and the machine configuration to the final image enhancing. Results A face and content validation study has been conducted; 18 radiology professionals were recruited to evaluate our software using a questionnaire. The results show that our tool is realistic in many ways (72% of the participants agreed that the simulations are visually realistic), useful (67%) and suitable (78%) for teaching X-ray radiography. Conclusions The proposed tool allows simulating the most relevant steps of the projectional radiography procedure. The virtual patient posing system and X-ray simulation module execute at interactive rates. These features enable the lectures to show their students the results of good and bad practices in a classroom environment, avoiding radiation risk.

2011 ◽  
Vol 38 (6Part3) ◽  
pp. 3389-3390 ◽  
Author(s):  
J Schlosser ◽  
K Salisbury ◽  
L Xing ◽  
D Hristov

2017 ◽  
Vol 3 (3) ◽  
Author(s):  
Avi Ben-Shlomo ◽  
Gabriel Bartal ◽  
Morris Mosseri ◽  
Shay Shabat

The study aimed to determine how the effective dose (ED) in lumbar spine X-ray examinations is influenced by patient positioning considering the X-ray tube heel effect. The study used Monte Carlo simulation of the effective dose. Using the heel effect, positioning of the patient in the head to anode direction reduces the effective dose by 5% when compared with the head to cathode positioning.


1986 ◽  
Vol 47 (10) ◽  
pp. 1791-1795 ◽  
Author(s):  
M. Ribet ◽  
S. Gits-Léon ◽  
F. Lefaucheux ◽  
M.C. Robert
Keyword(s):  

2018 ◽  
Vol 2018 (1) ◽  
pp. 162-165
Author(s):  
Shin Mizutani ◽  
Daichi Yamaguchi ◽  
Takeshi Fujiwara ◽  
Masato Yasumoto ◽  
Ryunosuke Kuroda
Keyword(s):  
X Ray ◽  

2020 ◽  
Vol 3 ◽  
pp. 36-39
Author(s):  
Samson O. Paulinus ◽  
Benjamin E. Udoh ◽  
Bassey E. Archibong ◽  
Akpama E. Egong ◽  
Akwa E. Erim ◽  
...  

Objective: Physicians who often request for computed tomography (CT) scan examinations are expected to have sound knowledge of radiation exposure (risks) to patients in line with the basic radiation protection principles according to the International Commission on Radiological Protection (ICRP), the Protection of Persons Undergoing Medical Exposure or Treatment (POPUMET), and the Ionizing Radiation (Medical Exposure) Regulations (IR(ME)R). The aim is to assess the level of requesting physicians’ knowledge of ionizing radiation from CT scan examinations in two Nigerian tertiary hospitals. Materials and Methods: An 18-item-based questionnaire was distributed to 141 practicing medical doctors, excluding radiologists with work experience from 0 to >16 years in two major teaching hospitals in Nigeria with a return rate of 69%, using a voluntary sampling technique. Results: The results showed that 25% of the respondents identified CT thorax, abdomen, and pelvis examination as having the highest radiation risk, while 22% said that it was a conventional chest X-ray. Furthermore, 14% concluded that CT head had the highest risk while 9% gave their answer to be conventional abdominal X-ray. In addition, 17% inferred that magnetic resonance imaging had the highest radiation risk while 11% had no idea. Furthermore, 25.5% of the respondents have had training on ionizing radiation from CT scan examinations while 74.5% had no training. Majority (90%) of the respondents were not aware of the ICRP guidelines for requesting investigations with very little (<3%) or no knowledge (0%) on the POPUMET and the IR(ME)R respectively. Conclusion: There is low level of knowledge of ionizing radiation from CT scan examinations among requesting physicians in the study locations.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 426
Author(s):  
Behrooz Abbasi ◽  
Xiaoliang Wang ◽  
Judith C. Chow ◽  
John G. Watson ◽  
Bijan Peik ◽  
...  

Respirable coal mine dust (RCMD) exposure is associated with black lung and silicosis diseases in underground miners. Although only RCMD mass and silica concentrations are regulated, it is possible that particle size, surface area, and other chemical constituents also contribute to its adverse health effects. This review summarizes measurement technologies for RCMD mass concentrations, morphology, size distributions, and chemical compositions, with examples from published efforts where these methods have been applied. Some state-of-the-art technologies presented in this paper have not been certified as intrinsically safe, and caution should be exerted for their use in explosive environments. RCMD mass concentrations are most often obtained by filter sampling followed by gravimetric analysis, but recent requirements for real-time monitoring by continuous personal dust monitors (CPDM) enable quicker exposure risk assessments. Emerging low-cost photometers provide an opportunity for a wider deployment of real-time exposure assessment. Particle size distributions can be determined by microscopy, cascade impactors, aerodynamic spectrometers, optical particle counters, and electrical mobility analyzers, each with unique advantages and limitations. Different filter media are required to collect integrated samples over working shifts for comprehensive chemical analysis. Teflon membrane filters are used for mass by gravimetry, elements by energy dispersive X-ray fluorescence, rare-earth elements by inductively coupled plasma-mass spectrometry and mineralogy by X-ray diffraction. Quartz fiber filters are analyzed for organic, elemental, and brown carbon by thermal/optical methods and non-polar organics by thermal desorption-gas chromatography-mass spectrometry. Polycarbonate-membrane filters are analyzed for morphology and elements by scanning electron microscopy (SEM) with energy dispersive X-ray, and quartz content by Fourier-transform infrared spectroscopy and Raman spectroscopy.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1050-1051 ◽  
Author(s):  
S.W. Nam ◽  
D.A. Wollman ◽  
Dale E. Newbury ◽  
G.C. Hilton ◽  
K.D. Irwin ◽  
...  

The high performance of single-pixel microcalorimeter EDS (μ,cal EDS) has been shown to be very useful for a variety of microanalysis cases. The primary advantage of jxcal EDS over conventional EDS is the factor of 25 improvement in energy resolution (∽3 eV in real-time). This level of energy resolution is particularly important for applications such as nanoscale contaminant analysis where it is necessary to resolve peak overlaps at low x-ray energies. Because μcal EDS offers practical solutions to many microanalysis problems, several companies are proceeding with commercialization of single-pixel μal EDS technology. Two drawbacks limiting the application of uxal EDS are its low count rate (∽500 s−1) and small area (∽0.04 mm for a bare single pixel, ∽5 mm2 with a polycapillary optic). We are developing a 32x32 pixel array with a total area of 40 mm2 and with a total count rate between 105 s−1 and 106 s−1.


RELC Journal ◽  
2021 ◽  
pp. 003368822098266
Author(s):  
Tsung-han Weng

Although research in critical literacy has long been conducted in English as a second language contexts, a modicum of critical literacy research in English as a foreign language (EFL) contexts in which English is seldom used outside the classroom environment has also been undertaken. This article aims to discuss the introduction of critical literacy in the Teaching English to Speakers of other Languages (TESOL) profession, which has been neglected by TESOL researchers and practitioners in EFL contexts. The article reviews and synthesizes the existing literature by providing conceptualizations of the critical literacy approach to TESOL, examples of critical literacy implementation, and the benefits and challenges of implementing critical literacy pedagogy. The article concludes by calling for more critical literacy research in EFL contexts.


Sign in / Sign up

Export Citation Format

Share Document