scholarly journals An Atom Probe Study of Kappa Carbide Precipitation and the Effect of Silicon Addition

2014 ◽  
Vol 45 (5) ◽  
pp. 2421-2435 ◽  
Author(s):  
Laura N. Bartlett ◽  
David C. Van Aken ◽  
Julia Medvedeva ◽  
Dieter Isheim ◽  
Nadezhda I. Medvedeva ◽  
...  
1993 ◽  
Vol 67 (1-4) ◽  
pp. 334-341 ◽  
Author(s):  
R.C. Thomson ◽  
H.K.D.H. Bhadeshia

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Idurre Kaltzakorta ◽  
Teresa Gutierrez ◽  
Roberto Elvira ◽  
Pello Jimbert ◽  
Teresa Guraya

In the last decades, low-density steels for forging have increasing interest in the automotive industry, and good mechanical properties are required for their real application. This paper describes the results obtained for a 0.66C11.4Mn9.9Al duplex austenitic low-density steel after applying a set of isothermal treatments at different combinations of time and temperature, aimed to promote kappa carbide precipitation, and improve the mechanical properties obtained with a water quenching treatment. The effects of the different isothermal treatments on the microstructure and on the mechanical properties have been analyzed and compared to those obtained from a quenching heat treatment. We found that isothermal treatments in the range temperature between 550–750 °C promoted the profuse precipitation of coarse kappa carbides at grain boundaries, which dramatically reduced the ductility of the alloy, whereas a traditional quenching treatment resulted in a better combination of ductility and mechanical strength.


2007 ◽  
Vol 539-543 ◽  
pp. 4819-4825 ◽  
Author(s):  
D.V. Edmonds ◽  
K. He ◽  
Michael K. Miller ◽  
F.C. Rizzo ◽  
A. Clarke ◽  
...  

The microstructure following a new martensite heat treatment has been examined, principally by high-resolution microanalytical transmission electron microscopy and by atom probe tomography. The new process involves quenching to a temperature between the martensite-start (Ms) and martensite-finish (Mf) temperatures, followed by ageing either at or above, the initial quench temperature, whereupon carbon can partition from the supersaturated martensite phase to the untransformed austenite phase. Thus the treatment has been termed ‘Quenching and Partitioning’ (Q&P). The carbon must be protected from competing reactions, primarily carbide precipitation, during the first quench and partitioning steps, thus enabling the untransformed austenite to be enriched in carbon and largely stabilised against further decomposition to martensite upon final quenching to room temperature. This microstructural objective is almost directly opposed to conventional quenching and tempering of martensite, which seeks to eliminate retained austenite and where carbon supersaturation is relieved by carbide precipitation. This study focuses upon a steel composition representative of a TRIP-assisted sheet steel. The Q&P microstructure is characterised, paying particular attention to the prospect for controlling or suppressing carbide precipitation by alloying, through examination of the carbide precipitation that occurs.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2009
Author(s):  
Mattias Thuvander ◽  
Hans Magnusson ◽  
Ulrika Borggren

Carbide precipitation in martensitic low alloyed steels contributes to the mechanical properties through precipitation hardening. A high number density of carbides is desired to maximize the hardening effect, which is achieved through the precipitation of carbides on the dislocations in the martensitic structure. In this study, the nucleation, growth, and coarsening of vanadium and molybdenum carbides during aging at 600 °C for periods up to four weeks were investigated. The work covers characterization with atom probe tomography, which showed that the nucleation of V and Mo rich MC/M2C carbides takes place on dislocations. The growth of these carbides proceeds by the diffusion of elements to the dislocations, which has been modeled using Dictra software, confirming the rate of the reaction as well as the depletion of carbide formers in the matrix. For longer aging times, particle coarsening will decrease the number density of particles with a transition from dislocation-based carbides to separate rounded carbides.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1261
Author(s):  
Jaka Burja ◽  
Barbara Šetina Batič ◽  
Tilen Balaško

The microstructural evolution of a Fe-Mn-Al-Ni-C low-density steel was studied. The lightweight low-density steels are a promising material for the transportation industry, due to their good mechanical properties and low density. The base microstructure of the investigated steel consists of ferrite and austenite. Thermo-Calc calculations showed the formation of an ordered BCC (body-centred cubic) B2 phase below 1181 °C and kappa carbides below 864 °C. The steel was produced in a vacuum induction furnace, cast into ingots and hot forged into bars. The forged bars were solution annealed and then isothermally annealed at 350, 450, 550, 650, 750, and 850 °C. The microstructure of the as-cast state, the hot forged state, solution annealed, and isothermally annealed were investigated by optical microscopy and scanning electron microscopy. The results showed the formation of kappa carbides and the ordered B2 phase. The kappa carbides appeared in the as-cast sample and at the grain boundaries of the isothermally annealed samples. At 550 °C, the kappa carbides began to form in the austenite phase and coarsened with increasing temperature.


JOM ◽  
2018 ◽  
Vol 70 (9) ◽  
pp. 1752-1757 ◽  
Author(s):  
Arun Devaraj ◽  
Zeren Xu ◽  
Fadi Abu-Farha ◽  
Xin Sun ◽  
Louis G. Hector

Sign in / Sign up

Export Citation Format

Share Document