Low-Cyclic Fatigue Behavior of Peak-Aged Mg–Nd-Based Alloy

Author(s):  
Zhenming Li ◽  
Qigui Wang ◽  
Liming Peng ◽  
Alan A. Luo ◽  
Penghuai Fu
Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1023 ◽  
Author(s):  
Byung-Hoon Lee ◽  
Sung-Woo Park ◽  
Soong-Keun Hyun ◽  
In-Sik Cho ◽  
Kyung-Taek Kim

The effect of heat treatment condition on non-Cu AA7021 alloy was investigated with respect to mechanical properties and very high cycle fatigue behavior. With a focus on the influence of heat treatment, AA7021 alloy was solution heat-treated at 470 °C for 4 h and aged at 124 °C. Comparing the results of solution-treated and peak-aged AA7021 alloy shows a significant increase in Vickers hardness and tensile strength. The hardness of AA7021 alloy was increased by 65% after aging treatment, and both tensile strength and yield strength were increased by 50~80 MPa in each case. In particular, this paper investigated the very high cycle fatigue behavior of AA7021 alloy with the ultrasonic fatigue testing method using a resonance frequency of 20 kHz. The fatigue results showed that the stress amplitude of peak-aged AA7021 alloy was about 50 MPa higher than the solution-treated alloy at the same fatigue cycles. Furthermore, it was confirmed that the size of the crack initiation site was larger after peak aging than after solution treatment.


2020 ◽  
Vol 1002 ◽  
pp. 21-32
Author(s):  
Ahmed R. Alhamaoy ◽  
Ghanim Sh. Sadiq ◽  
Furat I. Hussein ◽  
S.N. Ali

The optimal combination of aluminum quality, sufficient strength, high stress to weight ratio and clean finish make it a good choice in driveshafts fabrication. This study has been devoted to experimentally investigate the effect of applying laser shock peening (LSP) on the fatigue performance for 6061-T6 aluminum alloy rotary shafts. Q-switched pulsed Nd:YAG laser was used with operating parameters of 500 mJ and 600 mJ pulse energies, 12 ns pulse duration and 10 Hz pulse repetition rate. The LSP is applied at the waist of the prepared samples for the cyclic fatigue test. The results show that applying 500 mJ pulse energy yields a noticeable effect on enhancing the fatigue strength by increasing the required number of cycles to fracture the sample. In addition, the effect on increasing the pulse energy from 500 mJ to 600 mJ shows a significant effect in term of creating the endurance limit for the samples.


1992 ◽  
Vol 75 (11) ◽  
pp. 2976-2984 ◽  
Author(s):  
Frank Guiu ◽  
Ming Li ◽  
Michael J. Reece

2011 ◽  
Vol 361-363 ◽  
pp. 1669-1672
Author(s):  
Wen Xiao Zhang ◽  
Guo Dong Gao ◽  
Guang Yu Mu

The low cycle fatigue behavior was experimentally studied with the 3-dimension notched LD8 aluminum alloy specimens at 300°C. The 3- dimension stress-strain responses of specimens were calculated by means of the program ADINA. The multiaxial fatigue life prediction was carried out according to von Mises’s equivalent theory. The results from the prediction showed that the equivalent strain range can be served as the valid mechanics for predicting multiaxial high temperature and low cyclic fatigue life.


1995 ◽  
Vol 10 (10) ◽  
pp. 2613-2625 ◽  
Author(s):  
Antonia Pajares ◽  
Lanhua Wei ◽  
Brian R. Lawn ◽  
David B. Marshall

Hertzian contact damage in as-fired, peak-aged, and over-aged Mg-PSZ is studied, in single-cycle and multiple-cycle loading. Indentation stress-strain curves reveal a monotonically increasing quasi-plasticity component in the contact deformation with increasing aging time. A bonded-interface technique is used to obtain surface and subsurface views of the damage zones beneath the spherical indenter. Analytical techniques, including optical and scanning electron microscopy, acoustic emission, Raman spectroscopy, and thermal wave imaging, are used to characterize the damage. The damage patterns are fundamentally different in the three aging states: microfracture dominated in as-fired; tetragonal-monoclinic phase-transformation-dominated in peak-aged; monoclinic-phase twinning-dominated in over-aged. The damage accumulates with increasing number of cycles, most strongly in the as-fired state. It also increases with increasing test duration in the as-fired and over-aged states, but not perceptibly in the peak-aged. The results imply predominantly mechanical fatigue effects, augmented by a chemical component in the as-fired and over-aged states. Broader implications in relation to the susceptibilities of zirconia ceramics to fatigue degradation in concentrated stress configurations, with special relevance to the evolution of flaws at the microstructural level, are considered.


Sign in / Sign up

Export Citation Format

Share Document